

Automated Game Testing with ICARUS:
Intelligent Completion of Adventure
Riddles via Unsupervised Solving

We report on the design rationale, the practical

implementation, and its use in game development

industry projects. The underlying solving mechanic is

based on discrete reinforcement learning in a dualistic

fashion, encompassing volatile short-term memory as

well as persistent long-term memory that spans across

distinct game iterations. In combination with heuristics

that reduce the search space and the possibility to

employ pre-defined situation-dependent action choices,

the system manages to traverse complete playthrough

iterations in roughly the same amount of time that a

professional game tester requires for a speedrun. The

ICARUS project was developed at Daedalic

Entertainment. The software can be used to generically

run all adventure games built with the popular

Visionaire Engine [6] and is currently used for

evaluating daily builds, for large-scale hardware

compatibility and performance tests, as well as for

semi-supervised quality assurance playthroughs.

The supplementary video depicts real-time solving with

active control and observation via a web control panel.

Author Keywords

Automated game testing; quality assurance;

reinforcement learning; automated bug reporting; con

tinuous performance analysis; continuous integration

testing

Abstract
With ICARUS, we introduce a framework for autonomous
video game playing, testing, and bug reporting. We report
on the design rationale, the practical implementation, and
its use in game development industry projects. With

ICARUS, we introduce a framework for autonomous video
game playing, testing, and bug reporting.

Permission to make digital or hard copies of all or part of this work for personal

or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice

and the full citation on the first page. Copyrights for components of this work

owned by others than the author(s) must be honored. Abstracting with credit is

permitted. To copy otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee. Request permissions

from Permissions@acm.org.
CHI PLAY'17 Extended Abstracts, October 15–18, 2017, Amsterdam,

Netherlands © 2017 Copyright is held by the owner/author(s). Publication

rights licensed to ACM.

ACM ISBN 978-1-4503-5111-9/17/10…$15.00

https://doi.org/10.1145/3130859.3131439

Johannes Pfau

University of Bremen

Bibliothekstraße 1,

28359 Bremen, Germany

Daedalic Entertainment

Papenreye 51,

22453 Hamburg

Germany

jpfau@tzi.de

Jan David Smeddinck

ICSI, University of California, Berkeley

1947 Center St, Berkeley, CA 94704

jandavid@icsi.berkeley.edu

Rainer Malaka

University of Bremen

Bibliothekstraße 1,

28359 Bremen, Germany

malaka@tzi.de

“For human beings, testing the

same game for a longer period of

time can be quite demanding of

both their creativity and

concentration. Since projects

require different styles of testing

at different times, such as simply

playing through the game as

quickly as possible or in-depth bug

testing of various parts of the

game, the testers often have to

actively force themselves to leave

the path their brains are used to

and to come up with new creative

ways of breaking the game.

Additionally, even for a linear

game, the number of possible

combinations as well as the order

they are made in during a play

session can become extremely

large.”

 - Maik Hildebrandt,

Head of QA at Daedalic

Entertainment [12]

Spotlight CHI PLAY'17 Extended Abstracts, Oct. 15–18, 2017, Amsterdam, NL

153

© the authors, 2017. This is the authors version
of the work. It is posted here for your personal
use. Not for redistribution.
The definitive version was published as:
Pfau, J., Smeddinck, J. D., & Malaka, R. (2017).
Automated Game Testing with ICARUS: Intelligent
Completion of Adventure Riddles via Unsupervised
Solving. Extended Abstracts Publication of the
Annual Symposium on Computer-Human Interaction
in Play, 153–164.
https://doi.org/10.1145/3130859.3131439

mailto:Permissions@acm.org
mailto:jpfau@tzi.de
mailto:malaka@tzi.de

ACM Classification Keywords

D.2.5 [Software Engineering]: Testing and Debugging;

I.2.1 [Artificial Intelligence]: Applications and Expert

Systems – Games;

K.8 [Personal Computing]: Games

INTRODUCTION

Continuo us and extensive quality assurance (QA) plays

an important role in the video game industry. Modern

games are often immensely complex software systems

that offer a broad range of possible game experiences

and are often immediately used by a large number of

consumers. At the same time, bugs or game glitches

can considerably harm the immersion, fun, and

endanger the overall game experience. Thus, a large

portion (typically ~10-20 %) [5] of the budget for a

particular video game production is spent solely on

finding and reporting bugs, testing traversability,

compatibility, performance, and aesthetics. Such issues

are usually broken down into three major categories of

severity (A: Crashes/Freezes, B: Blocker and C:

General. See: Table 1). While the order of severity is

descending, the probability to miss a bug of the

particular type is simultaneously ascending.

Furthermore, the majority of missed bugs stems from

error blindness (due to the habituation to the game

procedures and the sticking to established action choice

patterns), a specific form of change blindness [20], that

testers grow more likely to fall victim to the more often

and frequently they play-test the same game.

In this light, the introduction of ICARUS in professional

video game development does not only aim at reducing

labor costs for QA, but also at improving the bug

tracking performance and at decreasing the cognitive

load for human testers, assisting in all of the bug

categories named above. Following a discussion of the

current state of the art in game testing, automated

testing, and the application of techniques from artificial

intelligence / machine learning in these contexts, we

present the rationale and architecture of ICARUS in

detail, together with exemplary use cases in the form of

an industry case study and a discussion that reflects on

the value that such systems can currently provide in

game development processes, as well as an outlook on

future developments in the area of intelligent

automated game testing. This technical framework

description and the according case study provide a

report on a novel system for automated game testing

with adventure games. Readers from the scientific

community will gain a better understanding of the

extent to which the game industry is embracing applied

artificial intelligence and machine learning in contexts

beyond classic game AI, while readers with a

background in the game industry can gain a better

understanding of how similar approaches might benefit

their own projects.

RELATED WORK

So far, automated frameworks for testing software or

specifically video games have been developed.

Automated approaches exist, for example for selected,

discrete performance measurements, such as

determining the FPS at which a game can run on a

given system, or the CPU and memory load when

starting or running the game using new games or

saved game states [9]. While such systems can

frequently detect issues in category A, blockers and

especially more general flaws of non-technical nature,

like unsolvable conditions in complex quests, remain

undetected and require manual involvement. Other

approaches simulate playthroughs, using manually

A

Crashes/Freezes

Shutting down the game

unexpectedly or preventing

the screen from rendering

any further.

B

Blocker

Resulting in a game state

from which no further game

progress can be made.

C

General

Graphical flaws, animation

issues, typos, glitches.

Table 1. Common categories of bugs in

video games [1, p. 178].

Spotlight CHI PLAY'17 Extended Abstracts, Oct. 15–18, 2017, Amsterdam, NL

154

predetermined [3, 8, 11] or recorded [4, 10] action

sequences. These systems can help with detecting

many potential blockers and some more general issues.

However, they require manual adaptation or re-

recording of the action sequences whenever the

procedure changes, which typically happens on a daily

basis during the active game development of modern

games. Furthermore, most of the time video games do

not strictly constrain the player regarding the order in

which a sequence of actions needs to be executed.

Actions are not always mandatory to perform in order

to progress in a game and often the player is given

several choices on how to proceed. The former

deterministic approaches thus require different

manually defined (or recorded) action sequences. Even

in games with just a few optional branches or decision

points, the resulting combinatorial explosion clearly

illustrates the limitations of such manually guided

automatic testing. For some specific games, targeted

automatic solvers exist that iterate over the whole

possible action space of the game (e.g. in a brute force

breadth-first search fashion [7]). However, these

examples include a large number of actions that are

repeated over and over again, although they often do

not require validation in each iteration. Non-

deterministic approaches were successful in spotting

unwanted NPC behavior and glitches [13, 14],

parameter tuning [15], testing formal core mechanics

of multi-agent systems [16] or detecting every bug

expressible in a proposed language [17], but in rather

strictly limited situations, whereas our approach is

tailored to the needs of traversing complete games. For

a number of board games, complete, AI-guided play

testing approaches exist [17,18,19], which clearly

identified loopholes and design flaws, yet lack industrial

application.

As the following section will show in further detail, the

ICARUS system tackles a number of shortcomings of

the systems that were discussed in this section. With

an active and guided machine learning approach, it

narrows the playthrough down to the most relevant

actions, after having explored the complete game

action set, highlighting potential yet less common

blockers as well as general blockers, that - unlike

crashes or freezes - could have easily gone undetected

using more traditional automated testing. As Figure 7

shows, this can notably speed up the progress of QA

evaluations.

ICARUS

The system for intelligent completion of adventure

riddles via unsupervised solving (ICARUS) is a generic,

platformindependent game solver written in Lua [2]

and optimized for the Visionaire Game Engine [6].

ICARUS was developed at Daedalic Entertainment, a

leading company in the development and publishing of

adventure games. Hence, it is primarily focused on

solving the main functionality and riddles of adventure

games. However, the solver follows a more generic

design rationale, allowing for the integration of many

meaningful types of game actions that can be adapted

to any similarly traversable game genre, since the

solver system interacts with the game environment

using the same commands as a human player would. In

order to facilitate human supervision, the ability to

start, stop and play in the meantime, as well as for the

most accurate game representation and bug

reproducibility, the games are played in real-time.

However, soft acceleration methods, such as character

speed modification or skipping dialog texts, menus,

videos, etc. can be turned on and off at run-time via

the web control panel. In comparison to the existing

Left

clicks

for

each available

target object

Right

clicks

for

each available

target object

’Use’

each

item

with

each available

target object

’Use’

each

item

with

each available

target item

’Look at’

item

for

each available

target item

Table 2. Common generic action

categories for adventure games. Dialog

options are handled separately, see:

Dialog.

Spotlight CHI PLAY'17 Extended Abstracts, Oct. 15–18, 2017, Amsterdam, NL

155

approaches mentioned before, ICARUS can not only

record performance metrics (FPS, RAM, CPU usage etc.)

at single points of time, but it can track these

measurements continuously over the whole span of a

game iteration, recognizing crucial performance issues

and pinning them down to concrete game situations

and hardware constellations. For these iterations, it is

not constrained to pre-determined sequences or

recorded playthroughs, but it will dynamically explore

the game state regardless if knowledge about the

current situation is already given or not, using the

solving process explained in the following section. The

persistently learning nature of this setup allows ICARUS

to combine the advantages of complete action testing

and fast playthroughs, since it will start with a broad,

explorative search over all possibilities of the game

state and improve itself (in terms of number of

executions per playthrough, thus also speed) with each

further game iteration it traverses.

Solving Process

In most adventures, the actions that lead to progress

are well-defined, generally consisting of (a) interacting

with objects or characters, (b) collecting items, (c)

combining items with other items, objects or

characters, and (d) choosing from dialog options. Thus,

as long as the acting character is not busy executing an

action, ICARUS comes up with a representation of the

game state by collecting the set of possible actions

(Table 2) and stores it temporarily in a list of

currentActions.

On these current actions, ICARUS remembers possible

reward outcomes from previous choices that are stored

in currentRewards ∈ Za×4, the matrix mapping observed

actions to reward values (where 0 is assigned to

unobserved actions), which is a subset of allRewards ∈

Zb×4, containing short-term as well as long-term reward

information (b being the amount of all actions observed

in this and all previous game iterations in total, in 4

information dimensions about the action type, target,

used item and reward).

Action selection

To choose an action, ICARUS performs a (random if

configured to function probabilistically, consecutive if

configured to use complete action iteration) selection of

maxCurrentRewards ⊂ currentRewards, which contains

only the actions that yield the highest rewards among

currentRewards. After the selection, ICARUS executes

the corresponding action (e.g. a left click on a target

T), waits until the completion of the action and

evaluates the reward.

Reward learning

If the chosen action led to game progress (e.g. the

inventory state changed, a quest progressed, targets

appeared/disappeared, access to new areas is opened,

etc.), a configurable, positive number is remembered

persistently for this action in the long- and short-term

memory. In general, a given state change can be

considered positive if it is unrepeatable and leads to the

enabling of formerly unavailable game actions. If no

observable change happened, ICARUS punishes the last

action by setting the action reward in the short-term

memory to the respective punishment parameter that

can equally be configured per action category. These

configurations can take place in the script itself or via

the web control panel at run-time, with +1 as the

default for every positive game state change and -1 as

the default for every action type in any other case. In

Figure 2. Example scene of the

game Anna’s Quest, containing 18

target objects, indicated by blue

rings (for illustration purposes

only). On each target, the actions of

Table 2 can be applied.

Spotlight CHI PLAY'17 Extended Abstracts, Oct. 15–18, 2017, Amsterdam, NL

156

that way, actions that rarely contribute to progress

(e.g. looking at items) can be punished harder than

important actions (e.g. left click). Once the set of

current actions is iterated, i.e. every possible action has

a negative temporary reward, the short-term reward

map is soft-reset (see: Soft-resetting the reward map).

The segmentation into short- and long-term memory is

important since the completion performance increases

with short-term memory action selection and the final

ICARUS action selection as illustrated in Figure 7, which

is mainly caused by the inclusion of long-term rewards.

Entries of the long-term reward map are loaded

whenever the respective action is currently available

and thus strongly determine the sequence of the action

selection. Nevertheless, the short-term memory is still

needed, since the rewards for the actions in the long-

term memory are learned from a very specific game

state that has to be the same (or similar) to the current

game state in order to yield actual game progress. If an

action is remembered positively from the long-term

reward, but the current game state yields no reward for

this action, the respective punishment does not

overwrite the positive reward in the long-term memory,

but it will store a negative reward in the short-term

memory, which ICARUS will use in the end for the

action selection.

For example, ICARUS might record a positive reward if

the game object door is opened, where the underlying

game state had a precedent action that unlocked the

door. In the next game iteration, ICARUS will

remember the positive reward and prioritize attempting

to open the door, even if it is still locked. The

punishment reward will be recorded in the short-term

memory and ICARUS will proceed with other actions

(most likely the collection of a key and the unlocking

action key-with-door) before it will reconsider opening

the door. This reconsideration process is realized by the

following soft-resetting.

Soft-resetting the reward map

In this process, every negative value of the map is

increased by 1, so that -1 rewards result in 0

(“unobserved”) and even lower values are coming one

step closer to a possible re-observation. That means

that an action from an action type that is configured to

be punished with -5 requires 5 soft-resets to be

considered for execution again. If entries that have a

positive long-term reward turn to 0 (“unobserved”) in

this process, they are set to the respective original

instead to ensure that ICARUS prefers the execution of

them again, after the soft-reset. Figure 3 visualizes the

reward map right after a soft-reset, where several

actions containing long-term rewards are reset into

positive values (green), some actions were punished

harder and thus yielded a high negative reward (red),

and some actions had a low negative reward which

were reset to 0 in this step (white). In total, the

technique of soft-resetting results in a normalization of

the reward space, so that negatively rewarded actions

have a chance to be executed again, but strictly after

positively and new actions are tested.

Educated Guessing

The majority of adventure games are composed using

puzzles that challenge the human power of deduction

and creative combination by demanding the correct

usage of items with object targets or other items. In

theory, every possible item-item and item-object

combination has to be considered in the process of

action collection. However, most of these combinations

Figure 3. Reward map in a game

state containing 1 item and 15

possible action targets, visualized in

the web control panel.

Spotlight CHI PLAY'17 Extended Abstracts, Oct. 15–18, 2017, Amsterdam, NL

157

are evoking only standard responses and the set of items

that lead to progress in combination with each other or

with objects is most often small in comparison to the

possible set of all combinations.

For example, an inventory containing a red key, a red

box, a book and a blue box already has 16 possible item-

item combinations, where only the combination red key-

with-red box (or vice versa) leads to actual game

progress (see: Figure 4). Educated guessing

(comparable to pruning a search space in classical AI

search) is the process of discarding options that do not

make sense to evaluate in the first place, e.g. combining

each item with itself, combining the book to any of the

items or trying to open one of the boxes with another

box. It will leave red key-with-red box and red key-with-

blue box as possible actions, even if the latter won’t

have any positive effect.

The decision why red key-with-blue box is still

considered an action that could yield reward and e.g.

book-with-blue box is not, is made on the type of

response that the respective action evokes. red key-

with-blue box will trigger an evaluation about whether

the key fits the box (or a comment that is precisely

defined for this situation, e.g. “This key doesn’t fit.”),

where book-with-blue box will only trigger a generic

standard response, e.g. “This doesn’t work”. Once this

generic response is triggered and it’s execution therefore

part of a test run, it does not need to be triggered by the

remaining zero-effect item combinations again, and the

solving process can thus be sped up using educated

guessing without sacrificing the validity and reliability of

a test run. This distinction between action types works

by assessing engine information about the particular

action, which cannot explicitly tell the reward or the

outcome, but is able to discard purely cosmetic or

commentary actions that often trigger random default

phrases. Every action that falls under certain categories,

invokes standard functions, is tagged with default codes,

or can be parsed for yielding no meaningful game

progress can thus be strictly excluded from repeated

executions in order to drastically reduce the amount of

combinations for active execution checks.

In a real world example, the combinatorial complexity

can become very severe. Figure 5 displays the extent of

combinations of a game state containing 11 available

items (Figure 6) and 18 available targets (as in Figure

2). Having many items in the inventory leads to

exponential growth of the number of possible actions,

which becomes even worse in scenes with many objects.

This is where educated guesses come into play in order

to avoid exponential growth in execution times that can

cause considerable costs even with automated testing.

As in the examples mentioned before, red cubes in the

figures represent actions that were already tested and

only yielded negative reward. However, a great portion

of these actions (marked in dark red) will never be

chosen, since ICARUS discards them using educated

guessing. The resulting subset of item-item combinations

still contains a number of combinations that do not result

in immediate game progress or only display (specifically

chosen) comments. However, in this example the

method of educated guessing reduced the search space

from 121 possible combinations to 35, i.e. by over 70%.

The same 11 items could also be used on 18 different

object targets in this scene, but over 80% do not require

active execution checking for game progress, since they

are already filtered out by educated guessing. However,

when fully exhaustive exploratory game testing is

required, developers and testers can disable this filter at

run-time.

Figure 4. Example inventory

containing 4 items, resulting in 16

combinations. Two actions are actually

beneficial for game progress (X), two

have also to be tested (?) and 12 can

be discarded via educated guessing

(X).

Figure 6. Inventory in the example

game state of Anna’s Quest. 11 items

are held that can be combined with

each other or used on the target

objects of the scene (Figure 2).

Spotlight CHI PLAY'17 Extended Abstracts, Oct. 15–18, 2017, Amsterdam, NL

158

Dialog

The dialog choice system differs systematically from the

previously mentioned actions. Dialogs are temporary,

usually occur only in situations in which no other

actions are possible and the set of options is very

limited, namely to the number of dialog alternatives

that are available at any give step. In each frame on

the main loop, ICARUS assesses whether the game

state is in a dialog or not before choosing an action or a

dialog part. If the game is in a dialog state, a dialog

option is chosen at random or in a traversing fashion,

depending on the configuration.

Hints

Before ICARUS selects an action, but after observing all

scene targets and inventory items, it will check if the

situation fits to one of the hints (scripted actions) that

can be manually defined in the configuration. Each of

the two action archetypes (dialogs and actions) has its

own hint table. E.g., MGHints contains walkthrough-like

actions for puzzles that have an extremely low

probability of being solved without context-sensitive,

graphical, or time-dependent comprehension. ICARUS

will favor an action above all else if the situation at

hand matches the situation specified in a MGHint with

the following general structure:

The current scene name is exactly “SCENE”.

The target “TARGET_OBJECT” exists.

All conditions in the table “CONDIS” are met. No condition in

the table “NEG_CONDIS” is true.

All values of “LIST OF VALUE-CONSTRAINTS” are met.

All items of “LIST OF NECESSARY ITEMS” are held.

All items of “LIST OF FORBIDDEN ITEMS” are not held.

Using this mechanism, in extreme cases, a complete

game iteration can be executed deterministically by a

hard-coded sequence of hints, since ICARUS will not

explore the remaining game actions as long as the

current situation fits to the execution of a hint. This can

help with troubleshooting fixed processes as every

game iteration has the same action sequence (e.g. in

system compatibility or performance testing).

Web Control Panel

Since ICARUS is written completely in the script

language Lua that is implemented by the engine, it can

be applied to games running from the game engine

editor as well as to complete builds, without the need of

external programs or tools. However, to achieve more

comfortable control over the most important

parameters at run-time, to visualize the technical view

of target objects, items, and possible item-item or

item-object combinations, to provide a current

snapshot of the debug log, and to provide access to the

complete shortand long-term memory reward map, the

system comes with a web control panel (see Figures 3,

5, and the supplementary video figure). It is

implemented running a local web server on the testing

machine, which can be assessed while the same

computer is actively testing or remotely, to simplify the

observation, control, and management of multiple

testing iterations on several machines.

Completion time

Figure 7 depicts the time different agents required for

one game iteration of the game The Pillars of the Earth

that is currently under development. The complete and

random action selection versions of ICARUS which do not

include educated guessing or reinforcement learning

serve as a baseline for the more elaborate solving

Figure 5. Example reward map

subset in a scene of the game

Anna’s Quest. Yellow/white actions

are unobserved, red actions were

tried out and yielded negative

reward. The majority of actions

however are discarded by educated

guessing (dark red), since they are

classified as yielding no reward

beforehand.

Spotlight CHI PLAY'17 Extended Abstracts, Oct. 15–18, 2017, Amsterdam, NL

159

algorithms. They complete the game in about the time a

human player needs who has no prior experience with

the game, its puzzles, and is exposed to the content for

the first time. The heuristic filtering of educated guessing

cuts away about 40 % of the time required, whereas

using educated guessing together with short-term

reinforcement learning cuts the time required for

completing the game by more than than half. Combining

all of the introduced features (educated guessing, both

short-term and long-term reinforcement learning, and

hints), ICARUS can achieve a playthrough of the game in

about 30 minutes, which is on the same level as the

fastest speedruns of expert QA testers with prior

experience of the game. Given that the game actions are

supposed to be carried out at real-time, in an in-game,

situated manner, these completion times can be

considered near optimal and they are well suited for

regular application.

Performance Tracking

In order to assess performance data about the game

while playing, ICARUS can be configured to log the

usage of RAM, VRAM, the time required to render the

last frame (see: Figure 8), and further information of

arbitrary kind into a persistent csv file. This tracking can

take place simultaneously or independently from the

basic solving process. If enabled, ICARUS will record one

entry of performance data per frame, but save only the

most extreme values of a given time window. In

practice, each of the entries contains a time stamp, the

name of the current scene, the current chapter, the last

action and target that were chosen from ICARUS, and

performance data: the time needed to render this frame

in ms, as well as the amount of RAM and VRAM used in

this frame in MB, before they get chunked to only the

most extreme values, segmenting in steps of 1000ms.

This implementation of performance tracking is novel in

the sense that it is integrated in the process of

automated solving, as well as being able to detect and

report critical performance issues immediately (e.g.

significantly high frame load time, or exhaust of available

RAM/VRAM) in continuous comparison of the same game

situation over many different hardware constellations

and development versions, which proved to be of great

use in its first application during the development of The

Pillars of the Earth.

Bug detection

Returning to the initial issue of bug detection, the

ICARUS system can support the detection and reporting

in all of the major bug categories:

A

Crashes/Freezes

Fully autonomous:

The tracking component of ICARUS will report

immediately when the game crashes or stops rendering,

thus it won’t record any further data entries, displaying

the exact time, scene and action that lead to the defect.

B Blockers

Fully autonomous:

When a predefined progress timeout is defined (e.g. 5

minutes) or the action space is empty at a non-busy

point of time, ICARUS can detect if it is stuck in a game

state that can not proceed any further.

C General

Semi-autonomous:

Aesthetic graphical, animation, sound, or spelling issues

cannot be detected automatically using a logical solving

algorithm. However the generic setup can be employed

to play any adventure game, while human testers no

longer have to concentrate on executing game actions.

Figure 7. Completion times of the

game The Pillars of the Earth by

ICARUS employing several different

features and approaches, compared

to human playthroughs.

Spotlight CHI PLAY'17 Extended Abstracts, Oct. 15–18, 2017, Amsterdam, NL

160

They can instead focus on spotting bugs of all categories

more closely, monitoring multiple game sessions that are

being played automatically at the same time.

Furthermore, the explorative nature of ICARUS leads to

the execution of actions that are potentially undiscovered

by the regular testing procedures, often because they

seem to be not intuitive or promising to lead to game

progress, while still potentially containing or causing

bugs.

DISCUSSION AND SITUATED USE

ICARUS is currently used for continuous integration by

daily build validation at Daedalic Entertainment for all

new adventure titles. The application of ICARUS supports

the development teams in staying up to date with recent

game alterations and content implementation through

integrated testing. If any complete feature updates are

committed to the shared repository, ICARUS will

automatically test the build provided from the internal

game build server, reporting issues if necessary. ICARUS

is even more frequently applied in the continuous QA

processes and test runs, where it aids testers by

reducing workload, using the semi-autonomous

approach. Furthermore, ICARUS is employed in the gold

mastering of finalized games to check for changes of

traversability and performance after games are

completed to a shippable version. Finally, even large-

scale hardware compatibility tests that are using remote

hardware can be executed through ICARUS, as the first,

external test of the game The Pillars of the Earth on 61

different hardware constellations and platforms

demonstrated successfully. This does not only help with

determining minimum hardware requirements, but also

provides general insights into the impact of game

mechanics, graphics and scene staging across a large

number of systems.

Figure 9. Flowchart of ICARUS

Figure 8. An example result listing

of frame time tracking of The Pillars

of the Earth. Different scenes are

distinguished by coloring. Frame

time is recorded in ms.

Spotlight CHI PLAY'17 Extended Abstracts, Oct. 15–18, 2017, Amsterdam, NL

161

Limitations and Future Work

In order to widen the field of applications for ICARUS and

to be no longer constrained to a single game engine, the

system is currenlty being extended to support further game

engine environments, namely Unreal Engine and Unity.

CONCLUSION

The ICARUS solver for adventure games has a proven

track record as a significant enhancement for the quality

assurance at Daedalic Entertainment. It can support

developers and QA staff with tedious workflows,

simplifying daily tasks and enabling performance

comparisons across game iterations, game versions, and

hardware constellations that might otherwise be

prohibitively costly to execute. It can detect or aid the

detection of all major bug categories, by either fully

autonomous reporting or by allowing testers to focus

closely on occurring bugs instead of being busy with

executing game action sequences. The time needed for a

complete game iteration is on the same level as

professional game testers, thus no delays compared to

prior development and QA processes are caused when

using the system, while the time for implementing ICARUS

in a completely new game project is also reasonable.

Although some related work on automated non-technical

testing solutions in games exists for clearly defined,

template or macro-based scenarios, the generic nature,

the ability to iterate through complete game iterations

reliably, and the manifold features of tracking, visualizing

and reporting, allow ICARUS to support game studios with

establishing novel standards of QA, providing benefits to

developers, publishers, and gamers alike.

REFERENCES

1. Bob Bates. 2004. “Game Design”.

2. Retrieved February. 2017. “The programming

language Lua”. https://www.lua.org/

3. Fazeel Gareeboo and Christian Buhl. 2012.

“Automated Testing: A Key Factor For Success In

Video Game Development. Case Study And Lessons

Learned”.

http://www.uploads.pnsqc.org/2012/papers/t-26_

Gareeboo_paper.pdf EA Sports.

4. W.P. Judd and W.L. Heinz. 1997. “Universal

automated training and testing software system”.

https://www.google.com/patents/US5602982 US

Patent 5,602,982.

5. Mathieu Lachance. 2016. “How much people, time

and money should QA take?”. Retrieved March 29,

2017 from http://www.gamasutra.com/blogs/

MathieuLachance/20160113/263446/How_much_p

eople_time_

and_money_should_QA_take_Part1.php.

6. Retrieved March. 2017. “Visionaire Studio”.

http://www.visionaire-studio.net/

7. Cyril Marlin. 2011. “Automated Testing: Building A

Flexible Game Solver”.

http://www.gamasutra.com/view/feature/134893/

automated_testing_building_a_.php

8. Jim Merrill. 2016. “Automated testing for League of

Legends”. https://engineering.

riotgames.com/news/automated-testing-league-

legends Riot Games.

9. K. Peterson, S. Behunin, and F. Graham. 2012.

“Automated testing on multiple video game

platforms”.

“Having a script like ICARUS

that will simply try out different

combinations and paths without

getting exhausted or used to a

specific way of playing the game

helps focus QA resources on

more complex tasks (testing of

visuals and audio, game logic,

etc.), making QA testing of the

project more efficient and

effective. Obviously, automated

QA of parts or the entirety of a

game can never completely

replace human testers […].

However, it is definitely a

valuable addition to our QA

methods and helps to improve

the overall quality of our

games.”

- Maik Hildebrandt,

Head of QA at Daedalic

Entertainment [12]

Spotlight CHI PLAY'17 Extended Abstracts, Oct. 15–18, 2017, Amsterdam, NL

162

https://www.lua.org/

https://www.google.com/patents/US20120204153

US Patent App. 13/020,959.

10. G.M. Pope, J.F. Stone, and J.A. Gregory. 1994.

“Automated software testing system”.

https://www.google.com/patents/US5335342 US

Patent 5,335,342.

11. U.H.H. Wild and M.I. Jabri. 1997. “System and

method for automated testing and monitoring of

software applications”.

https://www.google.com/patents/US5671351 US

Patent 5,671,351.

12. Johannes Pfau. 2017. “Personal interview with Maik

Hildebrandt”

13. B. Chan, J. Denzinger, D. Gates and K. Loose.

2004. “Evolutionary behavior testing of commercial

computer games” In Evolutionary Computation,

2004. CEC2004. Congress on (Vol. 1, pp. 125-

132). IEEE.

14. 14. Southey, Finnegan, Gang Xiao, Robert C. Holte,

Mark Trommelen, and John W. Buchanan. 2005.

“Semi-Automated Gameplay Analysis by Machine

Learning.” In AIIDE, pp. 123-128.

15. Alexander Zook et al.. 2014. “Automatic playtesting

for game parameter tuning via active learning”.

Proceedings of the International Conference on the

Foundations of Digital Games.

16. Martens, Chris. 2015. “Ceptre: A language for

modeling generative interactive systems.” In

Eleventh Artificial Intelligence and Interactive

Digital Entertainment Conference.

17. Smith, Adam M., Mark J. Nelson, and Michael

Mateas. 2009. “Computational Support for Play

Testing Game Sketches.” In AIIDE.

18. Osborn, Joseph Carter, April Grow, and Michael

Mateas. 2013. “Modular Computational Critics for

Games.” In AIIDE.

19. Fernando de Mesentier Silva et al.. 2107. “AI as

Evaluator: Search Driven Playtesting of Modern

Board Games”. Proceedings of the AAAI 2017

Workshop on What's Next for AI in Games.

20. Daniel J.Simons and Ronald A.Rensink. 2005.

“Change blindness: past, present, and future”.

Trends in Cognitive Sciences, Volume 9, Issue 1

[p.16-20].

Spotlight CHI PLAY'17 Extended Abstracts, Oct. 15–18, 2017, Amsterdam, NL

163

