
 

Automated Game Testing with ICARUS: 
Intelligent Completion of Adventure 
Riddles via Unsupervised Solving

 

We report on the design rationale, the practical 

implementation, and its use in game development 

industry projects. The underlying solving mechanic is 

based on discrete reinforcement learning in a dualistic 

fashion, encompassing volatile short-term memory as 

well as persistent long-term memory that spans across 

distinct game iterations. In combination with heuristics 

that reduce the search space and the possibility to 

employ pre-defined situation-dependent action choices, 

the system manages to traverse complete playthrough 

iterations in roughly the same amount of time that a 

professional game tester requires for a speedrun. The 

ICARUS project was developed at Daedalic 

Entertainment. The software can be used to generically 

run all adventure games built with the popular 

Visionaire Engine [6] and is currently used for 

evaluating daily builds, for large-scale hardware 

compatibility and performance tests, as well as for 

semi-supervised quality assurance playthroughs.  

The supplementary video depicts real-time solving with 

active control and observation via a web control panel. 
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Abstract 
With ICARUS, we introduce a framework for autonomous 
video game playing, testing, and bug reporting. We report 
on the design rationale, the practical implementation, and 
its use in game development industry projects. With 

ICARUS, we introduce a framework for autonomous video 
game playing, testing, and bug reporting. 
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“For human beings, testing the 

same game for a longer period of 

time can be quite demanding of 

both their creativity and 

concentration. Since projects 

require different styles of testing 

at different times, such as simply 

playing through the game as 

quickly as possible or in-depth bug 

testing of various parts of the 

game, the testers often have to 

actively force themselves to leave 

the path their brains are used to 

and to come up with new creative 

ways of breaking the game. 

Additionally, even for a linear 

game, the number of possible 

combinations as well as the order 

they are made in during a play 

session can become extremely 

large.” 

 - Maik Hildebrandt,  

Head of QA at Daedalic    

Entertainment [12] 
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INTRODUCTION 

Continuo us and extensive quality assurance (QA) plays 

an important role in the video game industry. Modern 

games are often immensely complex software systems 

that offer a broad range of possible game experiences 

and are often immediately used by a large number of 

consumers. At the same time, bugs or game glitches 

can considerably harm the immersion, fun, and 

endanger the overall game experience. Thus, a large 

portion (typically ~10-20 %) [5] of the budget for a 

particular video game production is spent solely on 

finding and reporting bugs, testing traversability, 

compatibility, performance, and aesthetics. Such issues 

are usually broken down into three major categories of 

severity (A: Crashes/Freezes, B: Blocker and C: 

General. See: Table 1). While the order of severity is 

descending, the probability to miss a bug of the 

particular type is simultaneously ascending. 

Furthermore, the majority of missed bugs stems from 

error blindness (due to the habituation to the game 

procedures and the sticking to established action choice 

patterns), a specific form of change blindness [20], that 

testers grow more likely to fall victim to the more often 

and frequently they play-test the same game.  

In this light, the introduction of ICARUS in professional 

video game development does not only aim at reducing 

labor costs for QA, but also at improving the bug 

tracking performance and at decreasing the cognitive 

load for human testers, assisting in all of the bug 

categories named above. Following a discussion of the 

current state of the art in game testing, automated 

testing, and the application of techniques from artificial 

intelligence / machine learning in these contexts, we 

present the rationale and architecture of ICARUS in 

detail, together with exemplary use cases in the form of 

an industry case study and a discussion that reflects on 

the value that such systems can currently provide in 

game development processes, as well as an outlook on 

future developments in the area of intelligent 

automated game testing. This technical framework 

description and the according case study provide a 

report on a novel system for automated game testing 

with adventure games. Readers from the scientific 

community will gain a better understanding of the 

extent to which the game industry is embracing applied 

artificial intelligence and machine learning in contexts 

beyond classic game AI, while readers with a 

background in the game industry can gain a better 

understanding of how similar approaches might benefit 

their own projects. 

 

RELATED WORK 

So far, automated frameworks for testing software or 

specifically video games have been developed. 

Automated approaches exist, for example for selected, 

discrete performance measurements, such as 

determining the FPS at which a game can run on a 

given system, or the CPU and memory load when 

starting or running the game using new games or 

saved game states [9]. While such systems can 

frequently detect issues in category A, blockers and 

especially more general flaws of non-technical nature, 

like unsolvable conditions in complex quests, remain 

undetected and require manual involvement. Other 

approaches simulate playthroughs, using manually 

 

 

A 

Crashes/Freezes 

 

Shutting down the game 

unexpectedly or preventing 

the screen from rendering 

any further. 

B 

Blocker 

 

Resulting in a game state 

from which no further game 

progress can be made. 

C 

General 

 

Graphical flaws, animation 

issues, typos, glitches. 

 

Table 1. Common categories of bugs in 

video games [1, p. 178]. 
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predetermined [3, 8, 11] or recorded [4, 10] action 

sequences. These systems can help with detecting 

many potential blockers and some more general issues. 

However, they require manual adaptation or re-

recording of the action sequences whenever the 

procedure  changes, which typically happens on a daily 

basis during the active game development of modern 

games. Furthermore, most of the time video games do 

not strictly constrain the player regarding the order in 

which a sequence of actions needs to be executed. 

Actions are not always mandatory to perform in order 

to progress in a game and often the player is given 

several choices on how to proceed. The former 

deterministic approaches thus require different 

manually defined (or recorded) action sequences. Even 

in games with just a few optional branches or decision 

points, the resulting combinatorial explosion clearly 

illustrates the limitations of such manually guided 

automatic testing. For some specific games, targeted 

automatic solvers exist that iterate over the whole 

possible action space of the game (e.g. in a brute force 

breadth-first search fashion [7]). However, these 

examples include a large number of actions that are 

repeated over and over again, although they often do 

not require validation in each iteration. Non-

deterministic approaches were successful in spotting 

unwanted NPC behavior and glitches [13, 14], 

parameter tuning [15], testing formal core mechanics 

of multi-agent systems [16] or detecting every bug 

expressible in a proposed language [17], but in rather 

strictly limited situations, whereas our approach is 

tailored to the needs of traversing complete games. For 

a number of board games, complete, AI-guided play 

testing approaches exist [17,18,19], which clearly 

identified loopholes and design flaws, yet lack industrial 

application. 

As the following section will show in further detail, the 

ICARUS system tackles a number of shortcomings of 

the systems that were discussed in this section. With 

an active and guided machine learning approach, it 

narrows the playthrough down to the most relevant 

actions, after having explored the complete game 

action set, highlighting potential yet less common 

blockers as well as general blockers, that - unlike 

crashes or freezes - could have easily gone undetected 

using more traditional automated testing. As Figure 7 

shows, this can notably speed up the progress of QA 

evaluations.  

ICARUS 

The system for intelligent completion of adventure 

riddles via unsupervised solving (ICARUS) is a generic, 

platformindependent game solver written in Lua [2] 

and optimized for the Visionaire Game Engine [6]. 

ICARUS was developed at Daedalic Entertainment, a 

leading company in the development and publishing of 

adventure games. Hence, it is primarily focused on 

solving the main functionality and riddles of adventure 

games. However, the solver follows a more generic 

design rationale, allowing for the integration of many 

meaningful types of game actions that can be adapted 

to any similarly traversable game genre, since the 

solver system interacts with the game environment 

using the same commands as a human player would. In 

order to facilitate human supervision, the ability to 

start, stop and play in the meantime, as well as for the 

most accurate game representation and bug 

reproducibility, the games are played in real-time. 

However, soft acceleration methods, such as character 

speed modification or skipping dialog texts, menus, 

videos, etc. can be turned on and off at run-time via 

the web control panel. In comparison to the existing 

Left 

clicks 

for  

each available  

target object 

Right 

clicks 

for  

each available  

target object 

’Use’ 

each 

item 

with  

each available  

target object 

’Use’ 

each 

item 

with  

each available 

target item 

’Look at’ 

item  

for  

each available 

target item 

Table 2. Common generic action 

categories for adventure games. Dialog 

options are handled separately, see: 

Dialog. 
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approaches mentioned before, ICARUS can not only 

record performance metrics (FPS, RAM, CPU usage etc.) 

at single points of time, but it can track these 

measurements continuously over the whole span of a 

game iteration, recognizing crucial performance issues 

and pinning them down to concrete game situations 

and hardware constellations. For these iterations, it is 

not constrained to pre-determined sequences or 

recorded playthroughs, but it will dynamically explore 

the game state regardless if knowledge about the 

current situation is already given or not, using the 

solving process explained in the following section. The 

persistently learning nature of this setup allows ICARUS 

to combine the advantages of complete action testing 

and fast playthroughs, since it will start with a broad, 

explorative search over all possibilities of the game 

state and improve itself (in terms of number of 

executions per playthrough, thus also speed) with each 

further game iteration it traverses. 

Solving Process 

In most adventures, the actions that lead to progress 

are well-defined, generally consisting of (a) interacting 

with objects or characters, (b) collecting items, (c) 

combining items with other items, objects or 

characters, and (d) choosing from dialog options. Thus, 

as long as the acting character is not busy executing an 

action, ICARUS comes up with a representation of the 

game state by collecting the set of possible actions 

(Table 2) and stores it temporarily in a list of 

currentActions. 

On these current actions, ICARUS remembers possible 

reward outcomes from previous choices that are stored 

in currentRewards ∈ Za×4, the matrix mapping observed 

actions to reward values (where 0 is assigned to 

unobserved actions), which is a subset of allRewards ∈ 

Zb×4, containing short-term as well as long-term reward 

information (b being the amount of all actions observed 

in this and all previous game iterations in total, in 4 

information dimensions about the action type, target, 

used item and reward).  

Action selection 

To choose an action, ICARUS performs a (random if 

configured to function probabilistically, consecutive if 

configured to use complete action iteration) selection of 

maxCurrentRewards ⊂ currentRewards, which contains 

only the actions that yield the highest rewards among 

currentRewards. After the selection, ICARUS executes 

the corresponding action (e.g. a left click on a target 

T), waits until the completion of the action and 

evaluates the reward.  

Reward learning  

If the chosen action led to game progress (e.g. the 

inventory state changed, a quest progressed, targets 

appeared/disappeared, access to new areas is opened, 

etc.), a configurable, positive number is remembered 

persistently for this action in the long- and short-term 

memory. In general, a given state change can be 

considered positive if it is unrepeatable and leads to the 

enabling of formerly unavailable game actions. If no 

observable change happened, ICARUS punishes the last 

action by setting the action reward in the short-term 

memory to the respective punishment parameter that 

can equally be configured per action category. These 

configurations can take place in the script itself or via 

the web control panel at run-time, with +1 as the 

default for every positive game state change and -1 as 

the default for every action type in any other case. In 

 

 

Figure 2. Example scene of the 

game Anna’s Quest, containing 18 

target objects, indicated by blue 

rings (for illustration purposes 

only). On each target, the actions of 

Table 2 can be applied. 
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that way, actions that rarely contribute to progress 

(e.g. looking at items) can be punished harder than 

important actions (e.g. left click). Once the set of 

current actions is iterated, i.e. every possible action has 

a negative temporary reward, the short-term reward 

map is soft-reset (see: Soft-resetting the reward map). 

The segmentation into short- and long-term memory is 

important since the completion performance increases 

with short-term memory action selection and the final 

ICARUS action selection as illustrated in Figure 7, which 

is mainly caused by the inclusion of long-term rewards. 

Entries of the long-term reward map are loaded 

whenever the respective action is currently available 

and thus strongly determine the sequence of the action 

selection. Nevertheless, the short-term memory is still 

needed, since the rewards for the actions in the long-

term memory are learned from a very specific game 

state that has to be the same (or similar) to the current 

game state in order to yield actual game progress. If an 

action is remembered positively from the long-term 

reward, but the current game state yields no reward for 

this action, the respective punishment does not 

overwrite the positive reward in the long-term memory, 

but it will store a negative reward in the short-term 

memory, which ICARUS will use in the end for the 

action selection.  

For example, ICARUS might record a positive reward if 

the game object door is opened, where the underlying 

game state had a precedent action that unlocked the 

door. In the next game iteration, ICARUS will 

remember the positive reward and prioritize attempting 

to open the door, even if it is still locked. The 

punishment reward will be recorded in the short-term 

memory and ICARUS will proceed with other actions 

(most likely the collection of a key and the unlocking 

action key-with-door) before it will reconsider opening 

the door. This reconsideration process is realized by the 

following soft-resetting. 

Soft-resetting the reward map  

In this process, every negative value of the map is 

increased by 1, so that -1 rewards result in 0 

(“unobserved”) and even lower values are coming one 

step closer to a possible re-observation. That means 

that an action from an action type that is configured to 

be punished with -5 requires 5 soft-resets to be 

considered for execution again. If entries that have a 

positive long-term reward turn to 0 (“unobserved”) in 

this process, they are set to the respective original 

instead to ensure that ICARUS prefers the execution of 

them again, after the soft-reset. Figure 3 visualizes the 

reward map right after a soft-reset, where several 

actions containing long-term rewards are reset into 

positive values (green), some actions were punished 

harder and thus yielded a high negative reward (red), 

and some actions had a low negative reward which 

were reset to 0 in this step (white). In total, the 

technique of soft-resetting results in a normalization of 

the reward space, so that negatively rewarded actions 

have a chance to be executed again, but strictly after 

positively and new actions are tested.  

Educated Guessing  

The majority of adventure games are composed using 

puzzles that challenge the human power of deduction 

and creative combination by demanding the correct 

usage of items with object targets or other items. In 

theory, every possible item-item and item-object 

combination has to be considered in the process of 

action collection. However, most of these combinations 

 

 

Figure 3. Reward map in a game 

state containing 1 item and 15 

possible action targets, visualized in 

the web control panel. 
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are evoking only standard responses and the set of items 

that lead to progress in combination with each other or 

with objects is most often small in comparison to the 

possible set of all combinations. 

For example, an inventory containing a red key, a red 

box, a book and a blue box already has 16 possible item-

item combinations, where only the combination red key-

with-red box (or vice versa) leads to actual game 

progress (see: Figure 4). Educated guessing 

(comparable to pruning a search space in classical AI 

search) is the process of discarding options that do not 

make sense to evaluate in the first place, e.g. combining 

each item with itself, combining the book to any of the 

items or trying to open one of the boxes with another 

box. It will leave red key-with-red box and red key-with-

blue box as possible actions, even if the latter won’t 

have any positive effect.  

The decision why red key-with-blue box is still 

considered an action that could yield reward and e.g. 

book-with-blue box is not, is made on the type of 

response that the respective action evokes. red key-

with-blue box will trigger an evaluation about whether 

the key fits the box (or a comment that is precisely 

defined for this situation, e.g. “This key doesn’t fit.”), 

where book-with-blue box will only trigger a generic 

standard response, e.g. “This doesn’t work”. Once this 

generic response is triggered and it’s execution therefore 

part of a test run, it does not need to be triggered by the 

remaining zero-effect item combinations again, and the 

solving process can thus be sped up using educated 

guessing without sacrificing the validity and reliability of 

a test run. This distinction between action types works 

by assessing engine information about the particular 

action, which cannot explicitly tell the reward or the 

outcome, but is able to discard purely cosmetic or 

commentary actions that often trigger random default 

phrases. Every action that falls under certain categories, 

invokes standard functions, is tagged with default codes, 

or can be parsed for yielding no meaningful game 

progress can thus be strictly excluded from repeated 

executions in order to drastically reduce the amount of 

combinations for active execution checks. 

In a real world example, the combinatorial complexity 

can become very severe. Figure 5 displays the extent of 

combinations of a game state containing 11 available 

items (Figure 6) and 18 available targets (as in Figure 

2). Having many items in the inventory leads to 

exponential growth of the number of possible actions, 

which becomes even worse in scenes with many objects. 

This is where educated guesses come into play in order 

to avoid exponential growth in execution times that can 

cause considerable costs even with automated testing. 

As in the examples mentioned before, red cubes in the 

figures represent actions that were already tested and 

only yielded negative reward. However, a great portion 

of these actions (marked in dark red) will never be 

chosen, since ICARUS discards them using educated 

guessing. The resulting subset of item-item combinations 

still contains a number of combinations that do not result 

in immediate game progress or only display (specifically 

chosen) comments. However, in this example the 

method of educated guessing reduced the search space 

from 121 possible combinations to 35, i.e. by over 70%. 

The same 11 items could also be used on 18 different 

object targets in this scene, but over 80% do not require 

active execution checking for game progress, since they 

are already filtered out by educated guessing. However, 

when fully exhaustive exploratory game testing is 

required, developers and testers can disable this filter at 

run-time. 

 

Figure 4. Example inventory 

containing 4 items, resulting in 16 

combinations. Two actions are actually 

beneficial for game progress (X), two 

have also to be tested (?) and 12 can 

be discarded via educated guessing 

(X). 

 

Figure 6. Inventory in the example 

game state of Anna’s Quest. 11 items 

are held that can be combined with 

each other or used on the target 

objects of the scene (Figure 2). 
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Dialog  

The dialog choice system differs systematically from the 

previously mentioned actions. Dialogs are temporary, 

usually occur only in situations in which no other 

actions are possible and the set of options is very 

limited, namely to the number of dialog alternatives 

that are available at any give step. In each frame on 

the main loop, ICARUS assesses whether the game 

state is in a dialog or not before choosing an action or a 

dialog part. If the game is in a dialog state, a dialog 

option is chosen at random or in a traversing fashion, 

depending on the configuration.  

 

Hints  

Before ICARUS selects an action, but after observing all 

scene targets and inventory items, it will check if the 

situation fits to one of the hints (scripted actions) that 

can be manually defined in the configuration. Each of 

the two action archetypes (dialogs and actions) has its 

own hint table. E.g., MGHints contains walkthrough-like 

actions for puzzles that have an extremely low 

probability of being solved without context-sensitive, 

graphical, or time-dependent comprehension. ICARUS 

will favor an action above all else if the situation at 

hand matches the situation specified in a MGHint with 

the following general structure:  

 

The current scene name is exactly “SCENE”.  

The target “TARGET_OBJECT” exists.  

All conditions in the table “CONDIS” are met. No condition in 

the table “NEG_CONDIS” is true.  

All values of “LIST OF VALUE-CONSTRAINTS” are met.  

All items of “LIST OF NECESSARY ITEMS” are held.  

All items of “LIST OF FORBIDDEN ITEMS” are not held. 

 

Using this mechanism, in extreme cases, a complete 

game iteration can be executed deterministically by a 

hard-coded sequence of hints, since ICARUS will not 

explore the remaining game actions as long as the 

current situation fits to the execution of a hint. This can 

help with troubleshooting fixed processes as every 

game iteration has the same action sequence (e.g. in 

system compatibility or performance testing). 

 

Web Control Panel  

Since ICARUS is written completely in the script 

language Lua that is implemented by the engine, it can 

be applied to games running from the game engine 

editor as well as to complete builds, without the need of 

external programs or tools. However, to achieve more 

comfortable control over the most important 

parameters at run-time, to visualize the technical view 

of target objects, items, and possible item-item or 

item-object combinations, to provide a current 

snapshot of the debug log, and to provide access to the 

complete shortand long-term memory reward map, the 

system comes with a web control panel (see Figures 3, 

5, and the supplementary video figure). It is 

implemented running a local web server on the testing 

machine, which can be assessed while the same 

computer is actively testing or remotely, to simplify the 

observation, control, and management of multiple 

testing iterations on several machines. 

 

Completion time  

Figure 7 depicts the time different agents required for 

one game iteration of the game The Pillars of the Earth 

that is currently under development. The complete and 

random action selection versions of ICARUS which do not 

include educated guessing or reinforcement learning 

serve as a baseline for the more elaborate solving 

 

 

Figure 5. Example reward map 

subset in a scene of the game 

Anna’s Quest. Yellow/white actions 

are unobserved, red actions were 

tried out and yielded negative 

reward. The majority of actions 

however are discarded by educated 

guessing (dark red), since they are 

classified as yielding no reward 

beforehand. 
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algorithms. They complete the game in about the time a 

human player needs who has no prior experience with 

the game, its puzzles, and is exposed to the content for 

the first time. The heuristic filtering of educated guessing 

cuts away about 40 % of the time required, whereas 

using educated guessing together with short-term 

reinforcement learning cuts the time required for 

completing the game by more than than half. Combining 

all of the introduced features (educated guessing, both 

short-term and long-term reinforcement learning, and 

hints), ICARUS can achieve a playthrough of the game in 

about 30 minutes, which is on the same level as the 

fastest speedruns of expert QA testers with prior 

experience of the game. Given that the game actions are 

supposed to be carried out at real-time, in an in-game, 

situated manner, these completion times can be 

considered near optimal and they are well suited for 

regular application. 

Performance Tracking 

In order to assess performance data about the game 

while playing, ICARUS can be configured to log the 

usage of RAM, VRAM, the time required to render the 

last frame (see: Figure 8), and further information of 

arbitrary kind into a persistent csv file. This tracking can 

take place simultaneously or independently from the 

basic solving process. If enabled, ICARUS will record one 

entry of performance data per frame, but save only the 

most extreme values of a given time window. In 

practice, each of the entries contains a time stamp, the 

name of the current scene, the current chapter, the last 

action and target that were chosen from ICARUS, and 

performance data: the time needed to render this frame 

in ms, as well as the amount of RAM and VRAM used in 

this frame in MB, before they get chunked to only the 

most extreme values, segmenting in steps of 1000ms. 

This implementation of performance tracking is novel in 

the sense that it is integrated in the process of 

automated solving, as well as being able to detect and 

report critical performance issues immediately (e.g. 

significantly high frame load time, or exhaust of available 

RAM/VRAM) in continuous comparison of the same game 

situation over many different hardware constellations 

and development versions, which proved to be of great 

use in its first application during the development of The 

Pillars of the Earth. 

Bug detection  

Returning to the initial issue of bug detection, the 

ICARUS system can support the detection and reporting 

in all of the major bug categories:  

A  

 

Crashes/Freezes  

Fully autonomous:  

The tracking component of ICARUS will report 

immediately when the game crashes or stops rendering, 

thus it won’t record any further data entries, displaying 

the exact time, scene and action that lead to the defect. 

B Blockers  

Fully autonomous:  

When a predefined progress timeout is defined (e.g. 5 

minutes) or the action space is empty at a non-busy 

point of time, ICARUS can detect if it is stuck in a game 

state that can not proceed any further. 

C General  

Semi-autonomous:  

Aesthetic graphical, animation, sound, or spelling issues 

cannot be detected automatically using a logical solving 

algorithm. However the generic setup can be employed 

to play any adventure game, while human testers no 

longer have to concentrate on executing game actions. 

 

Figure 7. Completion times of the 

game The Pillars of the Earth by 

ICARUS employing several different 

features and approaches, compared 

to human playthroughs. 
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They can instead focus on spotting bugs of all categories 

more closely, monitoring multiple game sessions that are 

being played automatically at the same time. 

Furthermore, the explorative nature of ICARUS leads to 

the execution of actions that are potentially undiscovered 

by the regular testing procedures, often because they 

seem to be not intuitive or promising to lead to game 

progress, while still potentially containing or causing 

bugs. 

DISCUSSION AND SITUATED USE  

ICARUS is currently used for continuous integration by 

daily build validation at Daedalic Entertainment for all 

new adventure titles. The application of ICARUS supports 

the development teams in staying up to date with recent 

game alterations and content implementation through 

integrated testing. If any complete feature updates are 

committed to the shared repository, ICARUS will 

automatically test the build provided from the internal 

game build server, reporting issues if necessary. ICARUS 

is even more frequently applied in the continuous QA 

processes and test runs, where it aids testers by 

reducing workload, using the semi-autonomous 

approach. Furthermore, ICARUS is employed in the gold 

mastering of finalized games to check for changes of 

traversability and performance after games are 

completed to a shippable version. Finally, even large-

scale hardware compatibility tests that are using remote 

hardware can be executed through ICARUS, as the first, 

external test of the game The Pillars of the Earth on 61 

different hardware constellations and platforms 

demonstrated successfully. This does not only help with 

determining minimum hardware requirements, but also 

provides general insights into the impact of game 

mechanics, graphics and scene staging across a large 

number of systems.  

 

 

Figure 9. Flowchart of ICARUS 

 

Figure 8. An example result listing 

of frame time tracking of The Pillars 

of the Earth. Different scenes are 

distinguished by coloring. Frame 

time is recorded in ms. 
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Limitations and Future Work 

In order to widen the field of applications for ICARUS and  

to be no longer constrained to a single game engine, the 

system is currenlty being extended to support further game 

engine environments, namely Unreal Engine and Unity.  

 

CONCLUSION  

The ICARUS solver for adventure games has a proven 

track record as a significant enhancement for the quality 

assurance at Daedalic Entertainment. It can support 

developers and QA staff with tedious workflows, 

simplifying daily tasks and enabling performance 

comparisons across game iterations, game versions, and 

hardware constellations that might otherwise be 

prohibitively costly to execute. It can detect or aid the 

detection of all major bug categories,  by either fully 

autonomous reporting or by allowing testers to focus 

closely on occurring bugs instead of being busy with 

executing game action sequences. The time needed for a 

complete game iteration is on the same level as 

professional game testers, thus no delays compared to 

prior development and QA processes are caused when 

using the system, while the time for implementing ICARUS 

in a completely new game project is also reasonable. 

Although some related work on automated non-technical 

testing solutions in games exists for clearly defined, 

template or macro-based scenarios, the generic nature, 

the ability to iterate through complete game iterations 

reliably, and the manifold features of tracking, visualizing 

and reporting, allow ICARUS to support game studios with 

establishing novel standards of QA, providing benefits to 

developers, publishers, and gamers alike. 
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