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ABSTRACT 
Many online games suffer when players drop off due to lost 
connections or quitting prematurely, which leads to match 
terminations or game-play imbalances. While rule-based out-
come evaluations or substitutions with bots are frequently used 
to mitigate such disruptions, these techniques are often per-
ceived as unsatisfactory. Deep learning methods have success-
fully been used in deep player behavior modelling (DPBM) 
to produce non-player characters or bots which show more 
complex behavior patterns than those modelled using tradi-
tional AI techniques. Motivated by these findings, we present 
an investigation of the player-perceived awareness, believabil-
ity and representativeness, when substituting disconnected 
players with DPBM agents in an online-multiplayer action 
game. Both quantitative and qualitative outcomes indicate 
that DPBM agents perform similarly to human players and 
that players were unable to detect substitutions. In contrast, 
players were able to detect substitution with agents driven by 
more traditional heuristics. 
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INTRODUCTION 
Match disruptions in online games are one of the major causes 
for frustration reported by players and make for a frequent 
occurrence given varying network quality depending on loca-
tion and over time [23, 5]. Designing and deploying scalable 
online games that avoid interruptions remains an important 
challenge [17]. Even with recent advances in network stability, 
the complete prevention of any disruptions is highly unlikely 
[4]. Apart from unintended cut-offs, disconnecting on purpose 
can also occur due to a range of reasons, such as escaping, in 
which players avoid their loss to be recorded, resentful behav-
ior (“rage-quitting”), in which players seek to deprive their 
opponent(s) of victory or intentionally hurt their own team in 
collaboratively competitive games, as well as forced discon-
nects of opponents via glitches or third-party tools [58, 57, 32, 
60, 31]. To counteract purposely caused interruptions, some 
games record them as losses or penalize them, which can lead 
to even higher frustration for non-self-inflicted disconnects 
[40]. Other examples of successful commercial games substi-
tute disconnected players by heuristic, computer-controlled 
bots that continue playing (in some examples only until the 
original player reconnects), e.g. Left 4 Dead [54] (an FPS), 
Heroes of the Storm [13] (a multiplayer online battle arena 
game), Super Smash Bros. 4 [46] (a Beat’em up), Mario Kart 8 
[11] (a racing game), Civilization V [15] (a turn-based strategy 
game), Company of Heroes 2 [14] (an RTS), or Rocket League 
[39] (a sports game). However, such substitution is frequently 
criticized, since the replacing bot is usually under-performing 
and not able to compete with human players. While modern 
machine learning approaches have proven to master a variety 
of games by continual improvement through simulated play 
[30, 49, 43], over-performing bots would also miss the point of 
adequate, representative substitutions, since they would yield 
an obvious and considerable potential for abuse. 

Challenging all of the aforementioned issues, we approach 
the bridging of temporary match disruptions with a novel 
method, utilizing Deep Player Behavior Modeling (DPBM) to 
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substitute disconnected players in ongoing online matches by 
learning agents that replicate the specific behavior of a given 
player. 

In order to assess the applicability of this technique, the 
awareness of other involved players and whether DPBM re-
placements are perceived as representative of the prior player-
behavior, we designed a study to accumulate evidence on the 
following research questions: 

• Can disconnected players in running online matches be 
substituted by DPBM agents without being detected? 

• Do DPBM agents yield an adequate, fair representation 
that does not improve or worsen the original player’s 
performance? 

• Is DPBM capable of providing measurably better sub-
stitutions than traditional (heuristic) methods? 

We hypothesize that a sufficiently accurate representation of 
individual behavior will be indiscernible from the original 
human player and that DPBM is capable of implicitly approxi-
mating the player’s game proficiency, leading to no significant 
perceived deviation in performance. 

In order to establish a suitable test bed for the evaluation, we 
designed and implemented Korona:Nemesis [7], a platform 
fighter focused on player skills around prediction, learning 
and decision making. The game facilitates competitive skill-
based play using an extended rock-paper-scissors mechanic to 
allow a broad range of play styles to arise by preference rather 
than encouraging dominant strategies. In an ecologically valid 
real-world field study (n = 312), we simulated substitutions 
of players during online matches and assessed detection rates, 
awareness towards bot presence and DPBM fitness over the 
course of four weeks. Our study shows that participants were 
not able to discriminate DPBM behavior from original human 
players and – at the same time – that they were significantly 
more likely to detect replacements with classic heuristically-
driven bots. Between players that successfully detected a 
DPBM bot and those who were unaware, there were no differ-
ences in perceived performance or predictability. Supported 
by additional qualitative results, we conclude that DPBM are 
a suitable method for temporarily substituting disconnected 
players in online games and generate adequate and desirably 
human-like behavior. These findings contribute to game user 
research and game development alike, by demonstrating a tech-
nically feasible and successfully evaluated approach that can 
lay the foundations for considerable advancements in the chal-
lenge of overcoming negative consequences of online match 
disruptions. 

RELATED WORK 
Network stability and connection maintaining are under steady 
improvement, both in terms of progress on physical connec-
tions, as well as through the development of architectures 
and protocols for tackling discontinuity issues [55, 27, 38] 
or prediction of traffic anomalies to counteract bandwidth-
or connectivity-loss before it becomes critical [16, 22]. Yet, 
online games are still vulnerable to connectivity disruptions, 
since they can arise from a large variety of potential error 

sources, ranging from fast-paced real-time mechanics over 
massively large amounts of simultaneous players to vast con-
nection distance differences that can span continents. In combi-
nation, these issues are improbable to be overcome completely 
and can significantly impact the motivation of affected players 
and of other players in the same play-session. Disconnected 
players in cooperative team fights for example, have to be 
compensated for by allies which – depending on the game and 
genre – is unlikely to be manageable beyond short durations 
[18]. 

Originating from the more general approach of user modeling 
[3, 56, 61], the relatively young field of player modeling has 
developed steadily during the last decade, with approaches 
rooted in applications of machine learning techniques for data 
mining large sets of game protocols for purposes of analysis, 
prediction or classification [8, 26, 48, 42, 12], informing game 
development with player-specific insights [9, 6, 25], or the 
reproduction of limited, atomic tasks [51, 47]. Holmgård et al. 
studied personas for player decision modeling [19, 20] that 
continually observe and adapt to human behavior in order to 
produce agents with different decision making styles. These 
personas were realized via evolutionary linear perceptrons and 
compared to heuristic agents in a test-bed 2D dungeon crawler 
game, resulting in a higher player-rated human-likeness that 
could be utilized for game analysis, testing or providing believ-
able opponents. They also assessed player models as defined 
as “deviations from theoretically rational actions” in a study 
of Super Mario Bros. [21, 1] and clustered these by means of 
feature extraction. Using the same game, Ortega et al. [34] 
imitated human playing styles by means of neuroevolution and 
dynamic scripting, reaching higher scores of human-likeness 
than performance-directed AI agents, based on subjective judg-
ments. Missura and Gärtner utilized player modeling in a 2D 
test-bed shooter via support vector machines as a predictor 
for difficulty mismatches and to enable dynamic difficulty ad-
justment (DDA) based on the results [29]. Transforming the 
tracks of a racing game, Togelius et al. successfully deployed 
player modeling as a method of assessing entertainment met-
rics [50]. In previous work, we were successful in showing 
that player modeling agents yield significantly higher motiva-
tion potential than heuristic opponents [36]. In addition, we 
contrasted different machine learning techniques in a player 
modeling study of the MMORPG Lineage 2 [33, 35], show-
ing that deep learning offers the highest individual prediction 
accuracies with the ability to reproduce playing sessions that 
closely resemble the original behavior, as well as offering 
the potential to differentiate between players. Based on this, 
we embedded DPBM into a long-term DDA evaluation about 
competing against agents of own behavior on a daily basis in 
the MMORPG AION [37], in which DPBM opponents were 
perceived to be significantly more engaging than traditional 
DDA opponents adjusted by heuristic parameter tuning. 

In computer generated behavior in general, human likeness or 
believability has been established as one of the most important 
metrics to facilitate engaging game play [52, 24, 2, 28, 53, 34, 
19]. However, these approaches have focused on producing a 
general closeness to human behavior so far, not explicitly on 
representing behavior from specific individual players within 
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Figure 1. Screenshot extract of Korona:Nemesis. The player on the left utilizes Water to counter a Fire projectile, which will be extinguished. 

the same game session. Although player disconnects pose 
long-standing challenges, substituting disconnected players 
by means of player modeling bots has not been approached in 
openly published materials before, neither academically nor 
in the games industry, and – to the best of our knowledge – 
there is no prior scientific research on alternative temporary 
replacements. 

APPROACH 
In this section, we outline a description, critical design deci-
sions and mechanics of the game utilized for the evaluation, 
and provide a detailed overview of the architecture, method 
and parameters of the DPBM approach. 

Game Design 
To provide a setting for studying crucial decision making in 
real-time, we designed a fast-paced physic-based platform 
fighter called Korona:Nemesis that extends the classic rock-
paper-scissors scheme to seven types of element projectiles 
(cf. Table 1). In each level, players are placed in a 2D environ-
ment, start with 100 health points (HP) and face the objective 
of eliminating their opponents’ HP (last player standing wins). 
Players can move (left or right), jump, attack or switch actions 
using mouse and keyboard or an XBox or Playstation con-
troller. Switching changes the current stance to one of the 7 
elements. Giving the ability to chose any element at any time 
remedies potential balancing-issues, as the available action-
spaces are – in principle – symmetric. Attack will launch an 
elemental projectile depending on the current stance. Getting 
hit by a hostile projectile subtracts 10 HP. Since this damage 
is doubled on a critical hit and projectiles can be destroyed, re-
flected or influenced by other projectiles (cf. Table 1), players 
constantly have to be aware of present projectiles, their own 
and enemies’ stances and adapt quickly to the situation. As in 
rock-paper-scissors, predicting the opponent is key to success 
and since players adapt and react constantly, there is no single 
dominant strategy. 

• Exemplary game-play scenario: 
When facing an incoming Fire projectile, there are multi-
ple viable choices. The player might react with a Water 
attack, since Water projectiles destroy Fire projectiles (cf. 
Figure 1). A more offensive choice would be to counter 
this attack with a Pain attack, which would not stop the 

incoming projectile, but critically hit and ignite the oppo-
nent. At the same time, the opponent has the opportunity 
to re-counter this, depending on making good predictions 
(e.g. if predicting a Water counter-attack and intending to 
counter it with Lightning. Yet again, this strategy may fail: 
If the Water prediction turns out to be wrong, attacking 
Pain with Lightning will incur a critical hit). 

Fire Cancels Restoration 
Critically hits Restoration/Steel 
Destroys Steel projectiles 
Applies burning damage over time 

Water Immunity against burning 
Critically hits Fire/Steel 
Destroys Fire projectiles 

Lightning Immunity against suffering 
Critically hits Water/Death 
Destroys Water projectiles 

Restoration Restores 10HP 
Converts Water projectiles into 10HP 
Immunity against Pain 

Steel Reflects Lightning projectiles 
Reflects Pain projectiles 
Critically hits Lightning/Pain 

Death Inverts Restoration 
Critically hits Restoration/Pain 
Applies suffering damage over time 

Pain Self-ignites Fire 
Critically hits Fire/Lightning 
Applies 0.4 seconds stun 

Table 1. Elements and their interactions in Korona:Nemesis. 

Players need to learn not only the in-game element-
interactions, but also their preferred way to counter attacks 
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and maximize their chances, depending on the current situ-
ation. The presence of multiple viable choices, preferences 
and dislikes makes for a fertile ground for player modeling 
and decision making studies. For the evaluation of this work, 
participants were introduced to the mechanics via an in-game 
tutorial and were then able to play online matches consisting 
of 20 rounds in total. 

Deep Player Behavior Modeling 
Based on insights about expressive data and suitable modeling 
techniques from our earlier work [35, 36], we recorded all 
crucial player action decisions (attacking with – or switching 
to – a specific element and jumping) together with situational 
data from the current game state. After every level and for 
each player, the recorded behavioral data from all preced-
ing levels was fed into a dedicated 24x10x10x9 feed-forward 
multi-layer perceptron with backpropagation and a logistic 
sigmoid activation function (cf. Figure 2). The network was 
initialized randomly and trained in a background thread over 
1000 epochs, based on previous findings [35, 36] and bench-
marks prior to the study that indicated diminishing returns 
beyond these parameters. When a DPBM bot substituted a 
player, it applied the trained model generatively to retrieve 
a set of action probabilities based on the given state descrip-
tion in real-time. After a weighted choice, it executed the 
most likely predicted skill and proceeded with querying the 
DPBM for the next situation, effectively approximating the 
learned behavior from the player’s decision making so far. 
Since movement characteristics are rather limited within the 
game, motion behavior is approached heuristically. This imple-
mentation realizes a model-free (bottom-up) player modeling 
approach mapping gameplay data to actions via preference 
learning and classification, employing the player modeling 
taxonomy of Yannakakis et al. [59]. According to the player 
modeling description framework of Smith et al. [44], DPBM 
directly utilizes game actions (domain) to generate (purpose) 
individually (scope) modeled behavior by means of induced 
(source) training of machine learning techniques. 

Heuristic Bots 
Instead of DPBM bots, heuristic bots substituted players in 
situations where no recorded behavior or trained model was 
available, i.e.: 

• When players waited for over 2 minutes in the online multi-
player lobby, heuristic bots filled the remaining slots to en-
able constant, comparable 4-player situations. Since DPBM 
training took place on the involved local machines parallel 
to the matches and the game followed a client-hosted de-
sign, no existing behavioral data could be acquired from a 
centralized server. 

• When a player disconnected, but the background training 
thread for his DPBM counterpart was not completed. Yet, 
due to the considerably low temporal demand (cf. Results), 
this incidence occurred rarely. 

• When a player deliberately disconnected before displaying 
enough behavior information for training. 

Based on the insights of previous work [35, 36], we chose 
to endow the heuristic bots with random decision making 
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between elements, since it yields a balanced performance 
level, analogous to random decision making in rock-paper-
scissors. Thus, contrary to human and DPBM opponents, 
it was impossible for other players to predict this behavior. 
Movement was realized in the same heuristic fashion as for 
DPBM bots to avoid the detection of differences based on 
movement characteristics. 

Figure 2. DPBM architecture for a single player; mapping game state 
(information about player and closest target) to action probabilities. 
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Figure 3. Study sequence for each match: from an initial configuration, one human player is shifted into a mirrored match with substituted opponents, 
while the player is replaced in the original match utilizing a DPBM bot trained on their prior behavior. 

EVALUATION 
The following section discusses the approach, design, setup 
and execution of the evaluation, separated into a pilot labo-
ratory study and the main field study. For better clarity and 
explainability, we first elaborate on the field study, since the 
laboratory study only adds a qualitative assessment. 

Field Study 
To get a sufficiently large and expressive data set of ecologi-
cally valid measurements, we deployed the main study of this 
approach directly to a real-world target audience via a public 
release on the most popular game distribution platform Steam 
and gathered data during a study period of four weeks. We 
offered the game as free-to-play and concealed the appearance 
of an academic study during initial play to avoid confounding 
effects (e.g. experimenter bias [41]) until the point where 
players were asked to complete a follow-up survey. At this 
point, informed consent was gathered and data was stored in a 
pseudonymized fashion. 

Measures 
In-game, we recorded state-action data for DPBM training (cf. 
Figure 2), local training times and prediction accuracies of the 
DPBM, and the player’s estimation whether and which players 
were controlled by a bot after every completed match. Addi-
tionally, players were asked to complete an online post-study 
questionnaire concerning demographics, subjective remarks 
and quantitative assessments of substitution awareness, asking 
the following set of 7-point Likert scale questions (separated 
by page transitions) that were constructed for this purpose: 

• One of the players suddenly behaved differently. 

• I felt that one player suddenly played better than they did 
before. 

• I felt that one player suddenly played worse than they did 
before. 

• I felt that one player suddenly became very predictable. 

• I suspect that one of the players was switched for a bot. 

Procedure 
Participants could download Korona:Nemesis and play any 
number of matches without restrictions. Following a tuto-
rial that demonstrated the basic mechanics of the game, they 
were able to enter the online multi-player lobby in which they 
waited for other players to join their match. If less than four 

players connected after two minutes, the remaining slots were 
filled by heuristic bots. During every active match, we inter-
vened by substituting a random player by a DPBM bot that 
was trained in parallel to the playing session up until that point. 
If no trained model was available at that point, a heuristic 
bot took the place of the player. This replacement happened 
at a randomized point in time between round 5 and 15. To 
avoid discriminating the substituted players or diminishing 
their playing experience by being removed from play, they 
were immediately shifted into a new match that mirrored the 
original, differing only in the fact that the remaining three 
players were substituted in this version (cf. Figure 3). 

The displayed appearance, name and score of replaced players 
was kept consistent in both matches at the time of the fork. 
After 20 rounds, players entered an end-screen depicting the 
ranking of all competitors, were encouraged answer the single 
in-game bot detection question and were then redirected to the 
main menu. In case they accepted the additional post-study 
questionnaire, they were referred to it using their standard 
browser. 

Participants 
During the study period, 1397 unique players downloaded Ko-
rona:Nemesis. (n = 312) submitted complete, pseudonymized 
game protocols and bot detection responses, encompassing 
206 multi-player sessions in total. 24 of the players from these 
sessions (82.61% male, 17.39% female (self-identified), aged 
(M = 22.4,SD = 3.75)) completed the optional post-study 
questionnaire. 91.3% stated to be active gamers (playing mul-
tiple times a week), while 4.35% indicated that they only play 
occasionally (multiple times a month) and another 4.35% do 
not regularly play video games. 

Explorative Laboratory Study 
In order to pilot our approach and study design and to accu-
mulate qualitative statements about reasons for detecting bots, 
the general perception of them and desirable behavior, we also 
conducted an explorative laboratory study (n = 7). Partici-
pants were publicly recruited on-campus of a university, asked 
to play a match of Korona:Nemesis and subsequently partici-
pated in a semi-structured interview. For reasons of clarity in 
our observations, only one of the four players necessary for a 
match was controlled by a participant, while trained experi-
menters filled the remaining slots, with one of them randomly 
being substituted. The experiment lasted about 30 minutes in 
total. 
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Measures 
In addition to the aforementioned measures of the field study, 
a semi-structured interview assessed qualitative aspects of 
the player experience. Participants were able to provide free 
responses about the game, game experience and the behavior 
of their opponents, before the following directed questions 
were asked (in order and on separate pages). 

• What do you think of the game? 

• Did you notice anything strange during the game? 

• Did you notice a change of behavior of other players? 

• Do you think that there was a bot playing in this match? 

• How can you tell that a player is actually a bot (in general)? 

• How do you think bots in general should be improved to be 
(more) enjoyable? 

Procedure 
Following informed consent, participants were introduced to 
the game and asked to play the tutorial, without an enforced 
time limit. Once a player decided to proceed to visiting the 
online multi-player lobby, the experimenters joined soon there-
after, starting the match once the player count completed to 
four. All experimenters were kept spatially separated from the 
participants during the time of the match to avoid confounding 
factors from association or observation. The following pro-
cedure was analogous to the field study, only differing in the 
additional semi-structured interview that took place between 
match and post-study questionnaire. 

Participants 
(n = 7) subjects participated in the explorative pilot study 
(62.5% male, 37.5% female (self-identified), aged (M = 23.86, 
SD = 3.34)). 42.86% self-identified as active gamers (playing 
multiple times a week), while 28.57% respectively indicated 
that they only play occasionally (multiple times a month) or 
do not regularly play video games. 

RESULTS 
The following quantitative outcomes resulted from the main 
field study, while qualitative insights of the laboratory pilot 
study are discussed at the end of the section. 

actual behavior 

gu
es

se
d 

be
ha

vi
or

 

human DPBM bot heuristic bot 

isHuman 87.18% 
(68) 

85.48% 
(53) 

32.75% 
(75) 

isBot 12.82% 
(10) 

14.52% 
(9) 

67.25% 
(154) 

Table 2. Percentages (and absolute numbers in parentheses) of bot detec-
tion estimates, according to the responses to the in-game bot detection 
survey. 
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Using a chi-square test of independence with Yates-correction, 
a significant difference in guessing whether a player’s behav-
ior stems from a human or bot could be found based on the 
groups of actual human players, DPBM bots and heuristic 
bots (χ2

2 
,369 = 97.11, p < .001, Kramer’s v = 0.36), (cf. Table 

2 for percentages and absolute estimate numbers). For differen-
tiation between bot types, we further assessed the differences 
between the three particular groups: 

Actual human players and DPBM bots: 
χ1

2 
,140 = .002 (not significant) 

Actual human players and heuristic bots: 
χ1

2 
,307 = 67.1, p < 0.001 (significant), φ = .47 

DPBM bots and heuristic bots: 
χ1

2 
,291 = 52.95, p < 0.001 (significant), φ = .43 

Figure 4. Boxplot illustrating the results (medians, standard deviations 
as boxes, minima and maxima as whiskers, significant differences in-
between) of the custom awareness scale between players that detected 
(d) a bot and players unaware (u) of substitution. 

Concerning the awareness scale constructed for this study, we 
compared answers between players that managed to success-
fully detect a substitution and players unaware of it, in order 
to gain insights about if detected bots would alter the perceived 
behavior or performance (cf. Figure 4). Using a two-tailed 
unpaired t-test (after validations for uniform distribution), we 
found no significant difference in the subjective predictability 
(t23 = .17, p = .86), performance improvement (t23 = .33, p = 
.74) or performance decline (t23 = −.02, p = .98) between 
these groups. There were significant findings regarding the 
questions 

“One of the players suddenly behaved differently.” 
(t23 = 2.10, p = .04, Cohen’s d = 1.3) 
and “I suspect that one of the players was switched for a bot.” 
(t23 = 3.11, p = .005, Cohen’s d = 1.98). 
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The average DPBM training time (computed locally on each 
game client) amounted to (M = 2.23,SD = 2.87) seconds. 
Within each iteration, 80% of the recorded data was used 
for training, while the remaining 20% allowed for follow-
ing routine tests, resulting in a prediction accuracy of (M = 
82.17%,SD = 23.17%). There was a strong positive corre-
lation between the amount of data points used for training 
and the prediction accuracy of the following test (Pearson’s 
r2871 = .64, p < .01). 

Explorative Laboratory Study 
Additionally, the laboratory pilot study yielded augmentative 
qualitative results. 6 of 7 participants remarked that they liked 
the game overall. None of them noticed anything generally 
strange in the session, nor a change in behavior of one of the 
players. Regarding the question whether they recognized a 
bot, no one managed to provide a correct answer (4 of them 
did not detect a substituted player, 3 incorrectly judged human 
players to be bots). In a notable contradiction to this finding, 
when asked, what they expect from the behavior of a bot, 
the participants consistently responded that bots are typically 
noticeable due to their bad performance (5x) or predictable 
strategies (3x). In response to the question “How do you think 
bots in general should be improved to be (more) enjoyable?”, 
they stated that they “would like them to be as human as 
possible”, would want bots that are “adaptive (like humans), 
but not with superhuman performance”, and that “playing 
with real people feels better”. 

DISCUSSION & FUTURE WORK 
With respect to the initial research question “Can discon-
nected players in running online matches be substituted 
by DPBM agents without being detected?”, we found quan-
titative as well as qualitative outcomes that support our hy-
pothesis that DPBM yields a feasible approach for player 
substitution. The results of the bot detection estimation (cf. 
Table 2) indicate that participants were not able to differenti-
ate between human and DPBM behavior, even if they were 
substituted during a running match. The significant difference 
of this finding to the frequent detection of heuristic bots an-
swers “Is DPBM capable of providing measurably better 
substitutions than traditional (heuristic) methods?” in fa-
vor for DPBM and amplifies the expressiveness of the former 
results, since players evidently were able to detect bots, if their 
behavior was less human-like. Qualitative insights from the 
laboratory study complete the picture of a successful substi-
tution, since participants stated to be unaware of changes in 
behavior after DPBM substitutions and were unable to cor-
rectly name replaced players. 

The true positive rate of 87.18% for human behavior aligns 
fittingly with related research in which participants were asked 
to judge game sessions according to whether a human was 
playing The Legend of Zelda [10] (88.7%) or Boulder Dash 
[45] (80.7%) [24]. 

Regarding the remaining research question “Do DPBM yield 
an adequate, fair representation that does not improve or 
worse the original player’s performance?”, we provide evi-
dence based on the awareness questionnaire constructed for 
the purpose of this study. Player proficiency or performance 

can develop during game play, but there was no significant in-
crease or decrease or change in predictability between detected 
bots and undetected bots or regular players. Together with a 
considerably high DPBM prediction accuracy, this supports 
the claim that DPBM behavior does not significantly deviate 
from the original human player behavior. Additionally, our 
approach meets the desired ideal behavior of bots, according 
to the qualitative statements that players prefer to play against 
opponents that are as human-like as possible. 

Still, this study faces limitations. In general remarks on 
the field study, 3 participants stated that they played Ko-
rona:Nemesis simultaneously with a friend who took part 
in the same session, while constantly communicating. The 
discrepancy between the original and the mirrored match (that 
could be communicated between the players) was the main 
cause of detecting the substitution for these players, as op-
posed to actually judging changes in behavior. We were not 
able to prevent this potentially confounding factor in the large-
scale field study, as we aimed for maximizing the ecological 
validity of the approach. However, even if this introduced a 
bias to our results, it would have increased the correct bot de-
tection rates, which actually would decrease the possibility of 
a non-significant result of the bot detection estimation between 
human and DPBM opponents. The result, that people were not 
able to discriminate human and DPBM behavior nonetheless 
indicates that this bias was not significantly confounding. 

Furthermore, one player claimed that a real-time game might 
not be the best test bed for substitution awareness, since play-
ers are too focused on themselves. While we can not disprove 
this assertion or control for some extent of bias, we explicitly 
designed Korona:Nemesis in an extended rock-paper-scissors 
fashion in which players have to pay attention to their oppo-
nent. Moreover, we argue that artificial behavior would likely 
be even more indiscernible in many other types of games, such 
as turn-based games, since action decisions that might seem 
idiosyncratic or not human-like would likely be assumed to be 
part of larger complex strategies that are common to turn-based 
games. Altogether, our study can only provide high certainty 
that DPBM player substitution works adequately, fairly and 
indiscernibly as implemented for the game Korona:Nemesis. 
Yet, we designed the game to be complex enough to facili-
tate individual preference formation and to require attention, 
prediction, learning and tactical decision-making without in-
corporating dominant strategies. We argue that the insights 
formed in this approach can be extended and generalized to 
other games in the genres of fighting games and decision-
making-focused action RPGs. We are looking forward to 
assess awareness, believability and representativity of DPBM 
opponents in these and further genres, including turn-based, 
cooperative games and games that encompass complex move-
ment characteristics. 

The DPBM architecture was kept as frugal as possible, in order 
to ensure feasible training times on the uncharted multitude 
of different hardware constellations that were able to acquire 
the game via Steam. The low average time required for net-
work training, however, suggests some room for elaborating 
more ambitious deep player modeling techniques (e.g. recur-
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rent, deep belief, GAN or context-driven LSTM networks) to 
further improve the proximity to human-like behavior, or to 
model more complex observation-to-action mappings. Since 
– to the best of our knowledge – no evidence in the field of 
player modeling exists that would give an estimation about 
the connection of prediction accuracy and perceived human-
likeness, we seek to aggregate data for a large-scale evaluation 
in which participants are asked to watch game sessions of 
DPBM agents with different gradations of prediction accuracy, 
judge them according to their human-likeness and allocate 
them to the correct human player from which the behavior 
originated. Additionally, no prior research exists that evalu-
ates the perception of fairness when it comes to substituting 
players. Thus, we plan to assess this from both the substituted 
player’s perspective, as well as the impression from involved 
team mates and opponents. 

Eventually, we envision DPBM as an effective instrument for 
elevating autonomous game testing and balancing, since realis-
tic player behavior can be employed, as well as for facilitating 
novel dynamic difficulty adjustment approaches that adapt to 
individual strengths, weaknesses and progresses of players 
over time. 

CONCLUSION 
Since unintentional, as well as deliberate disconnects, drop 
offs or client terminations are unlikely to disappear with con-
ventional, stability-improving hardware and software methods, 
we demonstrated an alternative approach that bridges (tempo-
rary) player absence by substituting them with Deep Player 
Behavior Models (DPBM). An ecologically valid online field 
study (n = 312) with a duration of four weeks simulated the 
replacement of a human player in the online multi-player 
fighting platformer Korona:Nemesis, assessing the remaining 
players’ awareness, the believability of the substitution, and 
the performance-related representativeness. We conclude that 
players were not able to distinguish between DPBM bots and 
original human players, but notably managed to detect bots 
based on heuristic behavior. Perceived performance and pre-
dictability changes did not differ between players who did 
detect DPBM bots and players who indicated that they thought 
that they had been playing against other human players only. 
All together, we implemented and evaluated a novel approach 
to tackling online match disruptions and lay ground for further 
evaluations spanning additional games, genres and integra-
tions. 

According to the guidelines of transparent statistics, the col-
lected data of this approach, as well as its implementation, will 
be made openly available upon publication, using an open-
access repository. 
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