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ABSTRACT 
Current eye tracking technologies have a number of 
drawbacks when it comes to practical use in real-world 
settings. Common challenges, such as high levels of 
daylight, eyewear (e.g. spectacles or contact lenses) and eye 
make-up, give rise to noise that undermines their utility as a 
standard component for mobile computing, design, and 
evaluation. To work around these challenges, we introduce 
CrowdEyes, a mobile eye tracking solution that utilizes 
crowdsourcing for increased tracking accuracy and 
robustness. We present a pupil detection task design for 
crowd workers together with a study that demonstrates the 
high-level accuracy of crowdsourced pupil detection in 
comparison to state-of-the-art pupil detection algorithms. 
We further demonstrate the utility of our crowdsourced 
analysis pipeline in a fixation tagging task. In this paper, we 
validate the accuracy and robustness of harnessing the 
crowd as both an alternative and complement to automated 
pupil detection algorithms, and explore the associated costs 
and quality of our crowdsourcing approach. 
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INTRODUCTION 
Eye tracking is a method of measuring an individual’s eye 
movement to identify both where a person is looking (gaze) 
and the sequence in which the person’s eyes are shifting 
from one location to another. Eye tracking tells us about 

points of interest in which the person’s eyes are relatively 
stable (fixation) for a minimum duration of 100-200 ms 
[10], as well as the rapid eye movements (saccade) from 
one fixation to another. While eye tracking techniques are 
diverse—from video-oculography VOG, video-based 
infrared IR to electrooculography EOG (for a detailed 
review see [18])—this paper focuses on video-based eye 
tracking.  

Video-based eye tracking relies on the detection of pupil 
positions to estimate gaze positions from images typically 
delivered by off-the-shelf video cameras. The technology 
has been used in a multitude of clinical, research and 
commercial applications; from monitoring drivers’ eyes to 
warn them of drowsiness and distraction [29,42], to skill 
assessment (e.g. assessing drivers and cyclists hazard 
perception skills [17,19]); and for clinical diagnosis (e.g. in 
Parkinson’s [20] and autism [13]), as well as wayfinding 
research (e.g. to evaluate and improve guidance systems in 
public infrastructures [27] and indoor environments [23]). 
In the field of HCI, these technologies have also been used 
to evaluate technologies, such as the usability and safety 
standards for using smartphones [22] and situated displays 
in public spaces [3]. 

Despite their diverse forms and considerable potential for 
applications, most eye tracking studies are conducted in 
artificial or semi-artificial environments—either in rooms 
with controlled lighting (e.g. laboratories) or in virtual 
reality environments. While video-based eye tracking 
performs comparatively well in such controlled 
environments, the technology fails dramatically under real-
world conditions [1,2,4,30]. Failure in real-world settings is 
mostly attributed to low pupil detection rates due to a 
number of factors, including: i) uncontrolled lighting [4]; ii) 
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(a)                   (b)   (c)                    (d) 

Figure 1. Challenging pupil images in real-world scenarios: 
(a) natural light reflection, (b) droopy eyelids, (c) spectacles 

and (d) eye make-up. The red circle in (d) indicates false pupil 
detection when wearing eye make-up. 
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pupil occlusion by the eyelid and eyelashes [4]; iii) eyewear 
[7] (e.g. spectacles or contact lenses); iv) eye make-up [7]; 
and v) motion-blur [16] (e.g. from fast eye movements 
during saccades). In particular, uncontrolled lighting 
conditions, e.g. while walking or driving, cause reflections 
and differences in contrast that limit the effectiveness of 
automated pupil detection algorithms. Since most video-
based eye tracking works in the infrared light spectrum, in 
many mixed lighting or outdoor conditions where infrared 
light (e.g. sunlight) floods the eye camera(s) (Figure 1a) the 
automatic detection of pupil features becomes difficult. 
Moreover, conditions like Ptosis (pathologic eyelid 
drooping) cause the eyelid to partially block the pupil of the 
eye camera (Figure 1b), making it difficult to detect pupil 
features. In a similar manner, spectacles and eye make-up 
result in substantial and varied forms of reflections and 
generally high amounts of noise (see Figure 1c and 1d).  

In this paper, we propose a new approach to achieve robust 
and accurate eye tracking measures by harnessing the 
crowd. Whereas the challenges facing automated pupil 
detection methods often restrict eye tracking to controlled 
environments, our proposed approach, CrowdEyes, offers 
mobile unobtrusive eye tracking with all standard metrics 
independent from most common pupil detection challenges. 
CrowdEyes includes a process to localize the pupil position 
without automated pupil detection algorithms. It begins by 
decomposing the collected video of the eye into single 
frames, marking key frames, and crowdsourcing the 
localization of the pupil position in these frames. The 
resulting positions are then used to generate standard eye 
tracking metrics (e.g. gaze and fixation positions and 
durations, saccades) using the according methods from the 
open-source eye tracking platform Pupil [12]. Fixations can 
then be semantically labeled by crowd workers. CrowdEyes 
is envisaged as a runtime tool operating on mobile devices 
alongside eye tracking hardware; however, to accommodate 
for the present technical limitations of mobile devices, our 
initial proof-of-concept data is processed offline after 
collection. 

Our contribution is twofold. For the crowdsourcing research 
community, we: i) investigate and evaluate the design of 
crowdsourcing tasks and strategies to affordably improve 
mobile wearable eye tracking technologies; ii) propose a 
crowd task quality assurance method that enables workers 
to evaluate and refine their own entries; and iii) provide 
experimental evidence that demonstrates that such quality 
methods also motivate workers to improve their accuracy. 
Second, we contribute to mobile wearable eye tracking by: 
i) working around pupil detection challenges in real-world 
scenarios; ii) reliably localizing pupil positions; and iii) 
providing a tool for the mobile eye tracking research 
community to generate training datasets for pupil detection 
algorithms on demand by harnessing the crowd. 

BACKGROUND  
The work presented in this paper relates to several areas of 
research, including computer vision based eye tracking, 
self-reporting eye tracking, and crowdsourcing as an 
alternative and complement to automated detection and 
recognition systems. 

Computer vision based eye tracking 
In recent years, there has been a growing amount of 
research on the design and development of mobile eye 
tracking technologies. Studies have investigated novel pupil 
detection algorithms (e.g. [5,34,35,37]) and new calibration 
techniques (e.g. [15,33,38]), seeking robust commercial and 
open-source eye trackers for real-world settings. However, 
since most of the state-of-the-art pupil detection algorithms 
are based on the edge filtering approach [7], they are very 
susceptible to failure under the aforementioned conditions. 
Tonsen et al. [36] evaluated the pupil detection success rate 
of five state-of-the-art pupil detection algorithms: Swirski 
[34], ExCuSe [5], Isophete [37], Gradient [35] and Pupil-
Labs [12] using their large and challenging real-world 
Labeled Pupil in the Wild (LPW) dataset [36] of 130,856 
eye video frames from 22 participants. They found that, 
despite improvements in general pupil detection accuracy, 
the algorithms still yield unsatisfactory pupil detection rates 
under real-world conditions, with eye make-up causing 
issues in particular (60% of the data for participants 
wearing eye make-up yields no detection). In turn, 
inaccurate pupil detection and data loss dramatically affect 
eye tracking metrics [9]. Whereas inaccurate pupil detection 
reduces dwell time (total gaze duration in one area of 
interest from entry to exit), failure to detect the pupil 
reduces the number of fixations and increases fixation 
duration [9]. Recently, Fuhl et al. introduced a new pupil 
detection algorithm named ElSe [6] that outperforms other 
current state-of-the-art approaches (Swirski, ExCuSe, Pupil-
Labs, Starburst [40]  and Set [11]) in an evaluation study 
[7] that used a large-scale composite dataset of previously 
annotated images (from [36], [6], [34], and [5]). However, 
while ElSe slightly improves on the performance, it cannot 
yet robustly detect pupil positions in the presence of 
reflections, poor illumination conditions, or eye make-up 
(see [7] for detailed results).  

Because of the limitations of automated methods, outdoor 
studies are often avoided, and participants wearing 
spectacles, eye make-up, or who display Ptosis are 
commonly excluded. This leads to significant limitations 
and constraints in how and where eye tracking can be 
deployed.  

Self-reporting based eye tracking 
Studies have proposed alternative methods for determining 
gaze directions without the use of eye trackers. Rudoy et al. 
[24] developed a self-reporting method to collect gaze 
direction data from online workers. Workers were asked to 
watch a video followed by a grid screen with unique codes, 
which was briefly displayed at the end of each video. 
Workers were then asked to enter the code they saw most 



clearly to indicate their last gaze direction. Although this 
approach collects the last gaze direction, it fails to collect 
the direction of first gaze and all other gazes over the period 
of watching the stimuli. Similarly, Cheng et al. [2] 
developed a self-reporting gaze direction method based on 
mouse clicks. Unlike [24], Cheng’s approach collects the 
first and last gaze directions as well as other gaze directions 
(in between) from online workers. In Cheng’s study 
workers were instructed to look at a static image followed 
by a 9×9 grid image. The workers are required to memorize 
the sequence in which they shifted their sight (gaze) from 
one location on the viewed image to another until the grid is 
displayed. Workers are then required to recall the locations 
and sequence of their gaze, and click the relevant grid cell.  

Although the two studies report comparable results to those 
obtained from conventional eye tracking techniques, they 
suffer from a number of drawbacks, including: i) 
intrusiveness and full dependence on participants to self-
report; ii) an increase in cognitive load that could influence 
participant responses; iii) a dependence on participants’ 
memory, especially when recalling all gazes; iv) restricted 
use of on-screen applications only; and v) a lack of other 
important eye tracking features (e.g. fixation durations and 
saccades).  

As such, robust, unobtrusive and pervasive real-world eye 
tracking methods remain an unresolved challenge. Since 
self-reporting methods suffer number of substantial 
drawbacks, and automated pupil detection algorithms are 
insufficient in real-world settings, our approach proposes a 
workaround solution by harnessing the crowd. 

Crowdsourcing-based systems 
Previous literature has explored the potential for 
crowdsourcing to supplement automated algorithms when 
they are found insufficient. Studies have shown that 
workers do remarkably well in visual tasks that involve 
recognizing and identifying objects. For instance, Su et al. 
[32] used crowdsourcing to generate quality image 
annotations (e.g. fitting a bounding box around each bottle 
in an image) for over one million images that could be used 
for training automated object detection systems. Su et al. 
reported that the crowd successfully annotated 97.9% 
images with a high accuracy of 99.2% [32]. Similarly, Hipp 
et al. harnessed the crowd to annotate images from publicly 
available webcams in two road intersections to outline 
cyclists, pedestrians and vehicles [8]. They report a high 
inter class correlation (ICC) between workers, equivalent to 
the ICC of two trained researchers who completed the same 
annotation tasks. 

Such findings highlight the potential of utilizing the crowd 
to localize the eye pupil. However, unlike the latter two 
studies, which focused on counting a target in an image or 
fitting a bounding box around it, our study focuses on 
accurate pupil center localization in images in noisy real-
world settings (i.e. images could be blurry, or may contain 
high light reflections making the pupil more challenging to 

find). While crowdsourcing therefore appears to be a 
potential candidate to supplement eye tracking pupil 
detection algorithms, the high number of eye tracking 
images to be crowdsourced, and the high accuracy level 
required to localize the pupil center, as well as the 
associated processing time and costs are major challenges 
that require further study. 

We address these challenges by utilizing frame selection 
methods to slice out highly similar frames, designing 
localization and labeling crowd tasks, and introducing a 
quality assurance method based on self-validation and 
refinement. The solution is evaluated against the LPW 
dataset and we report measures for localization accuracy, 
robustness, and costs. 

METHOD 
We extend recent work that has explored the use of the 
crowd in object labeling [8,25,32] and face recognition 
[31], and the collection of [41]—as well as the self-report 
on [2,24]—eye tracking data. Unlike Rudoy et al. [24] and 
Cheng et al. [2], CrowdEyes uses a conventional mobile 
head-mounted eye tracker and requires neither self-
reporting (i.e. participants indicate where they gazed) nor 
user interference for data collection (i.e. participants 
complete some tasks in order to find their gaze positions). 
Our system extends the Pupil open-source eye tracking 
platform [12] and consists of two main components: i) a 
head-mounted mobile eye-tracker based on the Pupil open-
source platform; and ii) a set of crowd tasks by which both 
pupil and calibration target (i.e. finger thumbnail) 
localization can be realized with very high reliability. 
Crowd workers were recruited from the commercial 
crowdsourcing platform CrowdFlower1. The robustness and 
accuracy of our approach was evaluated by leveraging the 
open-source LPW dataset [36] of heterogeneous head-
mounted mobile eye tracker recorded under natural (indoor 
and outdoor) conditions. The results were then compared to 
[36]’s reported measures of five state-of-the-art algorithms 
(Swirski [34], ExCuSe [5], Isophete [37], Gradient [35] and 
Pupil-Labs [12]).  We also establish and demonstrate a 
novel approach to crowdsourcing quality control based on a 
worker response validation and refinement cycle. We 
further demonstrate the potential for CrowdEyes to be 
extended to include crowd data analysis tasks that are 
traditionally very time-consuming for researchers; in this 
case the annotation and labeling of fixations. As such our 
contribution is to propose and demonstrate crowdsourcing-
based approaches for cost-effective, robust, accurate and 
extensible approaches to pervasive mobile eye tracking. 

CROWDEYES DESIGN CONSIDERATIONS 
There are two main components in the design of 
CrowdEyes. The first is the use of existing eye image 
capture hardware and software. The second is the crowd 
task design, including accommodating crowdsourcing 
                                                             
1 www.crowdflower.com 



platform constraints, data types, and response quality. In 
this section we highlight the key factors that have shaped 
the design of CrowdEyes. 

The eye tracker 

Hardware 
Currently, commercial mobile eye tracking systems are 
expensive. Costs range from US $10,000 to $30,000 [2]. At 
the same time, it is possible to produce DIY head-mounted 
eye trackers to run by an open-source eye tracking 
platforms. Since mobile devices lack the support of 
multiple concurrent camera captures (eye and world), and 
off-the-shelf portable PCs are not sufficiently powerful to 
accommodate all eye tracking requirements (e.g. concurrent 
camera capture, pupil detection and gaze mapping), a 
workaround is required to provide robust DIY mobile eye 
tracking.  

Software and real-time performance 
To reach a wider range of users, it is a common practice to 
improve an existing well-established and widely utilized 
platform. Thus, we have utilized the Pupil platform [12]. Its 
open source nature enabled us to implement modifications 
and to integrate new features, such as the proposed 
crowdsourcing pipeline for localizing pupil and calibration 
targets, and for labeling what a person gazed or fixated on. 
Since eye tracking detection and gaze mapping are 
computationally intensive, all features other than recordings 
were turned off during the recording sessions, allowing the 
use of low-cost pocket PCs. 

Crowd tasks 

Data volume 
During the calibration and recording processes both world 
(from calibration process only) and eye frames must be 
crowdsourced to locate the calibration target and the center 
of pupil respectively. If run by brute-force, this results in an 
enormous number of images to crowdsource (e.g. one hour 
of eye tracking yields 108,000 eye images using a 30Hz 
camera). However, at such high sampling rates, camera 
frames contain redundant information where the target 
(pupil or calibration marker) has not moved significantly. 
To keep final running costs to a minimum, redundant data 
must be identified and excluded before crowdsourcing. 

Presentation 
CrowdEyes proposes two tasks: one to localize the target 
center (pupil or calibration target) and another to validate 
and refine rejected crowd submissions. The target 
localization task must be designed to avoid increasing 
cognitive workload that could impact completion time and 
decisions. Thus, localization tasks should i) minimize visual 
search for the targets across the presented images, and ii) 
reduce page scrolling and mouse movements from one 
image to another. On the other hand, the validation and 
refinement task (for rejected submissions) must be designed 
to allow for a quick overview of all workers’ annotated 
images and easy access to those that require refinement. 

Quality vs. costs 
While accurate pupil localization is essential, low data 
processing costs are also highly desirable. Existing 
crowdsourcing platforms (e.g. CrowdFlower) provide built-
in quality control measures, such as test question injection, 
and multiple judgments aggregation. Since the multiple 
judgments aggregation approach increases the final costs, 
and workers may become aware of the test questions, 
additional quality measures are required. Moreover, such 
platforms provide a facility to either remove workers with 
quality responses lower than a threshold or accept their 
responses regardless. For CrowdEyes, where fine center 
localization accuracy is a necessity, it would be expensive 
and unfair to remove workers who spent time and effort 
completing the tasks but did not achieve high accuracy at 
the first attempt. Furthermore, increasing standard quality 
measures and removing workers not meeting the minimum 
quality standards from the first try will also incur additional 
costs. Since crowdsourcing platforms give little control 
over the task’s pipeline and quality measures, CrowdEyes 
instead recruits workers from CrowdFlower to complete 
tasks on an external website. Workers who do not meet the 
minimum quality measures receive extra opportunities to 
validate and refine their entries before receiving payment. 

THE CROWDEYES SYSTEM  
CrowdEyes is composed of: (i) the Pupil open source head-
mounted eye tracker, comprising a 3D printed frame fitted 
with two low cost off-the-shelf web cameras (30Hz) to 
capture the eye and world scene (Figure 2); (ii) portable 
video capture and processing hardware in the form of a 
portable pocket PC (Figure 2) running Ubuntu 16.04 and a 
Bluetooth remote button; (iii) software plugins that link eye 
tracking software to a crowdsourcing server; and (iv) the 
crowdsourcing server. The total cost of construction of the 
eye tracker is approximately US $270 (not including 
crowdsourcing costs). 

The CrowdEyes capture component (Capture) and player 
component (Player) are written in Python to extend the 
open-source Pupil platform. Capture is a lightweight eye 
and world scene video capture plugin. It disables Pupil’s 
functionalities (i.e. runtime detection processes) other than 
video capture to function with the hardware limitations of 
current pocket PCs, and saves information about the start 
and end time of each calibration procedure. Player is the 
plugin that processes CrowdEyes captured data offline by 

 
Figure 2. CrowdEyes system architecture. 

 



harnessing the crowd. Post recording, Player communicates 
with the crowdsourcing server to: i) delegate pupil and 
calibration target localization; and (optionally) ii) delegate 
the labeling of the detected fixations as a crowd annotation 
task. Using Pupil’s open source software is crucial to our 
system. Whereas the CrowdEyes Player completes the 
localization process, the underlying Pupil software enables 
instant access to standard eye tracking functionalities, such 
as gaze mapping, saccades, as well as fixation positions and 
durations. 

The crowdsourcing server manages the assignment and 
quality of pupil and calibration target localization as well as 
fixations labeling. It consists of three components: i) an 
online web service that mediates between Player and 
CrowdFlower and recruits and manages workers; ii) a web 
application where workers complete the tasks; and iii) a 
database server storing the responses gathered from the 
crowd. 

DATA CAPTURE 
Recording begins with a user-controlled calibration process 
that is initiated by powering-up the processing unit. Our 
early trials showed that computer vision, in real-world 
scenarios (e.g. outdoor), not only fails to detect the center 
of pupil but the machine-known calibration target too. 
Unlike computer vision, the nature of CrowdEyes means 
that any object that can be unambiguously identified by 
workers can be used as the calibration target. Consequently, 
the wearer can perform calibration based on features in the 
environment, such as the handle on a door, or 
(conveniently) their own thumbnail (Figure 3). For 
example, a wearer can perform calibration by looking at the 
nail of her thumb while moving her head (thumb-static), or 
vice versa, moving her thumb keeping her head static 
(head-static), such that the target occupies different 
positions in her visual field. The only constraint is the 
requirement for a short pause between each movement (as 
in a typical 9-point calibration method) to allow for the 
collection of a sufficient number of calibration samples. 
The calibration process takes on average one minute 
depending on the wearer and how many pauses (points) 
they cover. The wearer marks the end of calibration with a 
click of the remote button. While recording, our system 
imposes no other constraints. CrowdEyes enables the 
wearer to wear their spectacles, contact lenses, and eye 
make-up, and to record under any illumination level and 
under other uncontrolled real-world conditions. To stop 

recording the wearer clicks the remote button once more, 
which powers off the processing unit. 

PUPIL AND CALIBRATION TARGET LOCALIZATION 
The post-hoc localization of the center of pupil and the 
center of the calibration target (using CrowdEyes Player 
after the recording session is complete) proceeds in three 
steps: i) frame selection; ii) per frame pupil and calibration 
target localization; and iii) gaze mapping. 

Step1: Frame selection 
The CrowdEyes Player plugin separates recordings into 
calibration and post-calibration recording sessions (based 
on the remote button markers), and decomposes the videos 
into single frames. Raw decomposition produces a large 
number of frames. Following [14,26], CrowdEyes identifies 
and groups similar frames (e.g. where the pupil has not 
moved significantly) and selects one of these for analysis 
by the crowd. Whereas [14] is usually deployed in almost-
static environments, and a similarity check is performed 
periodically (every n-minutes) on a cropped part of a frame, 
CrowdEyes records and searches for a rapidly moving pupil 
in changing environment (e.g. lighting reflections). As 
such, CrowdEyes continuously checks all sequential frames 
for similarities. In contrast to [26], which looks for high 
significance differences between frames to summarize a 
video clip, CrowdEyes looks for minor changes to the pupil 
position. And unlike both [14,26], CrowdEyes uses a multi-
scale structural similarity index (MSSSIM) [39] for 
sequential frames, giving more weight to changes in pupil 
position than lighting reflections and other irrelevant noise 
factors. 

MSSSIM values range from 0.0 to 1.0, where a value of 1 
signifies an identical pair of frames. However, MSSSIM 
requires sufficient processing power and time to compare 
thousands of eye tracking pupil-frames with each other. To 
simplify and speed up this procedure, Player blurs and 
converts frames to gray scale and resizes them down from 
640×480px to 160×120px prior to the similarity check. 
Sequential frames with MSSSIM values >= 0.98 are 
clustered and the first frame (by MSSSIM value) is added 
to the crowd job list. The violin plots in Figure 4 show 
estimates of the density and distributions of MSSSIM 
values for several intervals of pixel distances between the 
center of a pupil in consecutive frames using the LPW 

 
Figure 4. MSSSIM distribution. 

 

 

 
Figure 3. Calibrating while looking at the thumbnail (left), and 

a player screenshot with overlaid crosshair gaze position 
(right). 

 



dataset [36]. The plots suggest the highest density between 
consecutive frames is when the MSSSIM is greater than 
0.985 with no distance differences. Moreover, most of the 
data with MSSSIM >= 0.98 is no farther than 4 to 5px away 
from the pupil center of the comparison image. Once 
frames are selected, Player prepares the localization job—a 
set of images and the associated crowd task description and 
configuration (i.e. pupil or calibration target localization, 
payment in cents, number of judgments)—and then submits 
them to the server for processing by the crowd. 

Step 2: Pupil and calibration target localization 
Upon receiving the job list, the server recruits workers from 
CrowdFlower to complete the tasks concurrently on the 
CrowdEyes website. Each worker is instructed to identify 
either the center of the pupil or the center of the calibration 
target for 130 sequential images (including 30 gold standard 
reference images) (640×480px) by clicking on the 
corresponding point in the image (Figure 5-left). To help 
workers visually identify the closest point to the center, the 
default mouse cursor is replaced with a customized 
crosshair pointer surrounded by a green circle (Figure 5-
left). To address the presentation design challenges for 
locating the target center of many images we resort to 
image sliders. Only one image at a time is presented to a 
worker to locate the target’s center (Figure 5), then once a 
worker performs a click, the next image will be presented to 
locate the next target center and so on.  

Quality throughput 
Whereas eye tracking requires highly accurate pupil 
localization, workers are usually after maximum monetary 
compensation. Hence, workers tend to complete many tasks 
as fast as possible to increase their daily income, which 
results in unintentional mistakes. However, with aggressive 
quality measures the chances of blocking workers 
unintentionally are high, resulting in unfairness towards 
workers and additional expenses for requesters. Thus, 
CrowdEyes uses three quality control methods to ensure 
high quality responses, low costs and fair payment: 

Injecting gold standard reference images: We employ this 
common crowd quality control method, injecting subject-
known-center images (eye or calibration frame for relevant 
localization task) for which a worker must achieve an 
accuracy (Euclidean distance from the true pupil center) of 

less than 10 pixels. Moreover, to minimize crowdsourcing 
costs, instead of increasing the number of judgments per 
task, CrowdEyes builds on a single judgment but increases 
the test data percentage. Each task contains 30% ground 
truth sequential images selected randomly from our 
manually annotated images pool. The percentage of test 
data is purposefully high so workers cannot identify test 
data among the others, and to compensate the single 
judgment per task. 

Euclidean distance between two sequential clicks: If the 
pupil moves rapidly, its center shifts gradually in 
consecutive frames. Thus, if we estimate the farthest 
Euclidean distance between two consecutive frames, we can 
use it as a quality measure to prevent random and robot 
responses as well as to detect unintentional false responses. 
Using the LPW dataset [36] we found the farthest distance 
between two consecutive frames to be under 15px (Figure 
6-left), while under 30px between two consecutive 
MSSSIM-selected frames (Figure 6-right). As such, a 
worker fails to meet this quality measure when the 
Euclidean distance between two clicks on two consecutive 
frames was farther than 15px (all frames task) or 30px 
(MSSSIM-selected frames task). For example, in an 
MSSSIM-selected frame job, an entry is rejected if a 
worker identifies pixel position (325, 230) and for the 
following frame identifies pixel position (290, 230)—a 
Euclidean distance of over 30px.  

Time spent: Since workers on crowdsourcing platforms are 
usually low-paid, and tasks are assigned on a first-come-
first-served basis, workers often multitask (sign-up for, and 
undertake, multiple crowd tasks at the same time). Thus, 
each worker is instructed to complete the localization task 
within 10 minutes (three times the average completion 
time) before it is reassigned to the next available worker. 
Late and inactive workers whose job has been reassigned to 
others lose their session and receive no payment. 

Entry validation and refinement: Unlike traditional 
crowdsourcing strategies to expel workers with low quality 
responses [28] without compensation, or simply accept all 
work regardless of quality, CrowdEyes enables workers to 
validate and refine their own entries. Where workers fail the 
quality tests they are given the option to refine their entries 
and submit again. The refinement stage may be completed 
multiple times until responses satisfy CrowdEyes quality 

 
Figure 5. CrowdEyes web pages to localize pupil (left) as well as 

validate and refine workers’ low accurate responses (right). 
The green-circled crosshair is the used cursor. 

 

 
Figure 6. The density of Euclidean distance between 

consecutive frames (left), and consecutive MSSSIM-selected 
frames (right). 

 



measures, or the worker gives up. If a worker gives up, all 
their entries will be rejected and they will not receive a 
payment. Workers are given 5 extra minutes every time 
they are asked to improve their responses before the task is 
reassigned to the next available worker. As such, 
CrowdEyes redirects the worker to the refinement page 
where her entries are overlaid on the task images. Images 
are presented in a grid and the worker is requested to 
validate all entries so they are as close to pupil center as 
possible and improved accordingly (see Figure 5-right). 

Recruitment and Payment 
For every eye tracking job, CrowdEyes creates a job 
recruitment page on CrowdFlower. The recruitment page 
contains a link to CrowdEyes tasks website, a text field to 
enter the payment redeem code, and a client-side script to 
validate payment with the CrowdEyes server. Since 
CrowdEyes recruits external workers from CrowdFlower to 
complete tasks on the dedicated CrowdEyes website, 
CrowdEyes must issue a payment code for workers to 
redeem their payment on CrowdFlower. To prevent workers 
from entering the same code twice or sharing it with other 
workers, we issue a unique payment code assigned to that 
particular worker. As soon as the code is entered on the 
CrowdFlower job page, our client-side validation script 
communicates with the CrowdEyes server for approval. 

Step 3: Gaze mapping 
The Player plugin contains a feature for checking the crowd 
job completion status and to retrieve the crowd responses 
when ready. Once received, the player component identifies 
outliers in the results for which it compensates using the 
calculated mean of the preceding and following frames. 
Then, using standard Pupil functions [12], Player calculates 
gaze positions, saccades, and detects fixations. At this point 
fixations are not labeled but the user can review recordings 
on which gaze, saccades and fixations are overlaid. 

Step 4: Labeling fixations (Optional) 
Eye tracking recordings yield fixations in which eyes are 
relatively static while looking at a specific location for 

duration of time. Each fixation has a corresponding set of 
world scene frames (e.g. a detected 235ms fixation captured 
by 30Hz camera is composed of 7 frames). Player selects 
the middle (temporally) frame out of each fixation set, 
eliminating repetitive frames [21], and sends all selected 
frames to the server to be labeled. The crowd task requires 
workers to answer questions related to fixations and the 
surrounding area in each image (e.g. categorize or describe 
objects being looked at) in a maximum of 10 world scene 
frames, on each of which a crosshair has been overlaid 
(corresponding to the fixation point). Upon the completion 
of the crowd labeling tasks, Player retrieves the aggregated 
crowd responses and overlays them on the recording clip to 
appear near the fixation’s crosshair (see Figure 3-right). 
Player also saves the aggregated results and their relevant 
timestamps in a spreadsheet. 

EVALUATION  
We took a two-stage approach to evaluate the CrowdEyes 
solution. First we aimed to ensure that the crowdsourcing 
approach to pupil localization was sufficient, thus we tested 
our method using a large-scale open dataset and compared 
the outcomes with those of existing measures [36]. Second, 
we evaluated the entire solution in a real-world scenario, 
moving through the entire pipeline from pupil calibration, 
over data capture, to analysis.   

Stage 1: Evaluation of pupil localization  

Methods & Procedure 
The CrowdEyes analysis pipeline (i.e. pupil localization) 
was assessed for accuracy, robustness, and cost, using an 
open benchmark dataset [36] of 66 heterogeneous 
recordings of 22 participants (5 different nationalities) 
totaling 130,856 frames captured in unconstrained 
environments (22 minutes of footage captured at 95fps). 
This dataset was chosen since it includes four distinct and 
challenging conditions: users with spectacles; users wearing 
eye make-up; and outdoor as well as indoor scenes with 
mixed light. The 66 recordings were crowdsourced twice: i) 
all frames without MSSSIM frame selection in the first run 

 
Figure 7. Cumulative distribution of the mean error: a) comparison of CrowdEyes method (run 1 (R1) and run 2 (R2) without and 
with MSSSIM frame selection respectively) and 5 common algorithms (adapted from [36]); b) comparison of  CrowdEyes method 

and automatic detection using frames collected indoors and outdoors; c)  comparison of CrowdEyes method and automatic 
detection using frames representing glasses and eye make up  

 



(R1), and ii) with MSSSIM frame selection in the second 
run (R2), and compared to [36]’s reported measures of the 
five state-of-the-art algorithms. 

Results and analysis 

1. Accuracy and robustness 
CrowdEyes in R1 and R2 significantly outperformed all 
five algorithms for cumulative distribution (CD) of the 
mean error in pixels on the LPW dataset. Figure 7a 
indicates that CrowdEyes localized the pupil center for 
100% of frames (in all conditions) in both R1 and R2 with a 
detection error (pixel’s distance from the ground truth) less 
than 10px for 80% and less than 20px for 97% data. To the 
contrary, the best two evaluated algorithms, Swirski and 
ExCuSe, failed to detect 15-20% frames (in all conditions) 
and yield a detection error over 20px for more than 35% 
data (and over 100px for more than 20%). Moreover, 
CrowdEyes (R1 and R2 together) demonstrated 
incomparable results to localize pupil center under 
challenging conditions. CrowdEyes yields a CD mean 
detection error under 25px for 99% indoors and outdoors 
data (Figure 7b) despite eye make-up (Figure 7c). However, 
it is notable that workers responses were less accurate with 
data of participants wearing spectacles and resulted in CD 
mean detection error under 25px for 90% of the data 
(Figure 7c). This was mainly due to the pupil being 
(partially) occluded from the eye camera field of view by 
the spectacle’s frame. Nevertheless, unlike CrowdEyes all 
five algorithms yield a CD mean detection error over 50px 
for 40% of indoors and 50% of outdoors data, and over 
100px of more than 80% data when participants are 
wearing eye make-up—not to mention more than 60% of 
data for participants wearing eye make-up is undetected. 
These results also suggest using the MSSSIM index to elicit 
redundant frames in R2 not only reduces costs but also 
maintains comparable levels of accuracy as R1. 

2. Time and costs 
The total number of micro-tasks for R1 was 1309 (130856 
frames). 1375 micro-tasks were assigned in total because 
for 39 micro-task assignments workers failed to complete 
any task and a further 27 micro-tasks workers either gave 
up on refining their entries or were timed out. 93 workers 
successfully refined their entries for micro-tasks after one 
or more refinement trials. For R2, the application of 

MSSSIM resulted in a reduction in the total number of 
frames by approximately 80%, hence an 80% reduction in 
the costs of crowdwork. In total 305 micro-tasks were 
assigned, since for 17 micro-task assignments workers 
failed to complete any tasks, in a further 15 micro-tasks 
workers either gave up on refining their entries or were 
timed out, and 44 workers successfully refined their entries 
for micro-tasks after one or more refinement trials. The 
mean time taken to complete a task in R1 as well as R2 was 
just under 3 minutes. In total, R1 took 57 minutes to 
complete compared to 26 minutes for R2. We paid US $0.4 
per worker per task (100 frames plus 30 gold injected 
frames), a pay rate equivalent to the UK minimum wage. 
The total cost for crowdsourcing R1 (all frames) was US 
$523 (US $22.7 per 95Hz eye tracking minute), while it 
was US $109 (US $4.7 per 95Hz eye tracking minute) for 
R2 (MSSSIM-frame selection), see Table 1. This is 
approximately US $7.2 per eye tracking minute (all frames 
30Hz camera) or US $1.4 per eye tracking minute 
(MSSSIM selected frames 30Hz camera). Hence, 
CrowdEyes enables us to capture accurate and robust eye 
tracking sessions for as little as US $87 per hour of data 
using 30Hz sampling rate cameras. 

3. Refinement 
Figure 8 illustrates the localization distance error 
distribution (from the true center) for the accepted (blue 
box) and rejected (green box) submissions (total 
submissions in red) during the target localization trial (trial 
1) and the refining trials (trial 2 and above). Responses are 
accepted when a submission meets all quality measures, or 
rejected when it fails one or more quality measures. Figure 
8 left (R1) trial 1 shows that response distribution for 
rejected submissions is equivalent to the accepted ones, 
indicating workers may fail one or more quality measures 
despite their overall good responses. From here, 73 workers 
in trial 2 and another 20 workers in trial 3 successfully 
refined their responses and significantly achieved an even 
better distance error distribution than that accepted in trial 
1. It is worth mentioning that outliers are almost eliminated 
in the accepted refinement trials. However, after the third 
trial remaining workers either timed out or gave up on 
refining, or kept on failing one or more quality measures. 
Similarly, Figure 8 right (R2) illustrates the significant 
improvement to submissions in the refinement trials. This 
suggests that trusting workers to validate and refine their 

 R1 R2 
Frames 130,856 27,230 
Micro-tasks 1309 273 
Workers (no tasks 
completed) 1375 (39) 305 (17) 

Refined (success rate) 120 (77.5%) 59 (74.6%) 
Cost $523 $109 

Time Mean (STD) 175s (56s) 179s (63) 

Table 1. R1: Crowdsourcing all video frames; R2 with 
frame selection using MSSSIM, for 66 recordings with 

95Hz cameras (about 23 minutes). 

 
Figure 8. Refinement trials vs. workers’ localizations distance 

error in pixels for accepted (blue box) and rejected (green 
box) submissions (total in red) from first run R1 (left) and 

second run R2 (right). 
 



responses results in significant quality improvement, offers 
workers fair compensation for their effort and time, and 
keeps costs to a minimum. As a result, 137 (out of 179) 
workers (across R1 and R2) successfully completed their 
refinement tasks and guaranteed their compensation. 
Finally, it appears that the refinement quality method also 
motivates workers to visit our job again. Approximately 
33% and 51% of workers who were accepted after the 
refinement trials in R1 and R2 respectively returned to 
complete more tasks. 

Stage 2: Applying CrowdEyes within a real-life scenario/  

Methods & procedure  
Here we illustrate the utility of CrowdEyes, and its 
extensibility to accommodate further crowdsourced tasks. 
This includes fixation labeling, which can present 
CrowdEyes users with summaries of where users focused 
on with their gaze, a common interest in the analysis of eye 
tracking data. We recruited 8 participants (6 male and 2 
female, all University employees or students, four with 
spectacles, and one with eye make-up) to use CrowdEyes to 
capture what they pay attention to with their gaze when 
purchasing food in their workplace cafeteria. Participants 
were instructed how to carry out the initial calibration 
procedure. We asked participants to use their thumbnail 
instead of the standard calibration marker, as our initial 
trials have shown automated detection of known markers to 
be problematic in light-filled and object crowded 
environments. As per the traditional 9-point calibration 
method, the predefined points are relative to the world 
camera field of view and user’s head position. Thus, by 
using the thumbnail, the predefined points are also 
appearing in different positions in the world camera’s field 
of view as the user moves her hand (or head) (see Figure 3). 
All participants chose to calibrate with a stationary thumb 
(moving their head)—looking at their thumbnail, covering 
the upper, middle and lower rows of their visual field and 
pausing three times on each row. Three participants chose 
to calibrate the eye tracker outdoors before commencing 
their purchase indoor. Participants were instructed to 
activate and calibrate the eye-tracker before entering the 
cafeteria, purchase their lunch, and turn off the recording on 
completion of their purchase. The overall recording time 

(all footage) was 28:56 minutes (shortest=1:50; 
longest=5:37; average=3:36) using 30Hz cameras. The total 
calibration time was 08:25 minutes (shortest=00:42; 
longest=01:23; average =01:03), and the total number 
calibration world frames was 15,150.  

Results & Analysis 

1. Time and costs 
The total number of MSSSIM-selected eye frames to 
crowdsource pupil localizations was 10,104 out of 52,093, 
which is a reduction by approximately 81%. This resulted 
in 102 micro-tasks completed successfully by 102 workers; 
nine workers had to refine their entries before being 
accepted. Additionally, calibration world frames were 
crowdsourced to localize the calibration target (in this study 
the tip of the finger thumb). The application of MSSSIM to 
select world frames from the calibration process resulted in 
a reduction by 42% (8,723 frames, 88 micro-tasks). This 
was not as effective as applying it to eye frames, which may 
be due to the higher noise factors (e.g. mixed light, many 
objects in the field of view) in the world frames compared 
to eye frames. However, the overall cost for pupil 
localization was US $41 (US $1.4 per minute), plus US $35 
to localize the calibration target in all recordings (US $4.4 
per calibration session). 

The total number of fixations was 1406 (excluding fixations 
during calibration), which resulted in 141 micro-tasks (each 
micro-task consisting of a maximum 10 world scene frames 
and 2 gold injected frames, judged by 3 workers). We 
recruited 456 workers from CrowdFlower to complete the 
tasks on CrowdEyes website. Among them 21 quit the tasks 
too early; 12 others timed out or gave up on refining their 
entries; and for 49 micro-tasks workers had to refine their 
answers to meet with the quality standard. Workers were 
instructed to categorize the object being fixated upon 
(identified by a crosshair) using a provided list of 
categories. The categories used were: ‘Man’, ‘Woman’, 
‘Group of people’, ‘Drink’, ‘Sandwich’, ‘Chocolate bar, 
crisps, chips, biscuits’, ‘Cash register’, ‘Display Screen’, 

 
Figure 10. Confusion matrix illustrating the agreement 

between the categories selected by the crowd workers and the 
correct (gold standard) categories. 

 

 
Figure 9 CrowdEyes Player plugin integrated into the open-
source Pupil Player software to show the labeled fixations. 



‘Table or chair’, ‘Sign, post or advertisement’, ‘Wall’, 
‘Floor’, ‘Gate or Door’, ‘Fruit’, ‘Other’. These categories 
were given after the research team went through the 
recordings and identified every possible item or object that 
the wearer could have fixated on. The mean time taken of 
all micro-tasks was ~114 seconds (STD=61 seconds). 
Successful workers were paid US $0.3 per micro-task (US 
$127 per full job). 

2. Accuracy and robustness 
Since this paper already demonstrated the accuracy of 
localizing the center of pupil above, in this section we focus 
on evaluating crowd responses related to just the fixations 
labeling task. Since the categories used for labeling 
fixations are nominal and judged by more than two 
workers, Fleiss’ kappa is used to measure the inter-rater 
reliability (IRR) between workers. Despite the simple 
quality control measure employed, the IRR results suggest 
substantial levels of agreement between workers, 
corresponding to a Fleiss’ kappa of 0.6671. To accumulate 
a gold standard, we have manually annotated the detected 
fixations prior to crowdsourcing, and used 10% of images 
for the injected gold standard quality measure. The crowd 
results were then compared with our gold standard 
annotation. The confusion matrix in Figure 10 illustrates the 
agreement between the categories selected by the workers 
and the gold standard categories. The values on the 
diagonal correspond to cases where the targets were 
recognized by the workers as belonging to the correct 
categories. The unweighted Cohen’s kappa coefficient 
computed from this matrix is 0.49. This moderate level of 
agreement is due to difficulties in distinguishing between 
some of the categories, which results in some high values 
outside of the diagonal in Figure 10. This could be due to 
the limited-training workers received, beside the quality of 
the captured image, the distance of the object being fixated 
on from the camera, or the object being unknown to 
workers. For example, category 15 (“Other”) was used 
whenever the workers didn’t recognize the object behind 
the crosshair. Removing this one category would result in a 
kappa of 0.61 (substantial agreement). 

Finally, the processed data is presented using Pupil Player 
software and CrowdEyes Player plugin. Figure 9 presents a 
selected frame from the lunch purchase process with the 
crowd-labeled fixation (Sandwich). 

DISCUSSION 
CrowdEyes demonstrates that crowdsourcing (human-
computation) can be employed to improve data processing 
and analysis for wearable mobile eye trackers. Our studies 
deliver robust comparative findings, showing high pupil 
tracking accuracy and suggest that fixation labeling can also 
be automated to deliver reliable and telling outcomes. 
While employing workers for these tasks does come at a 
cost, projections including broader worker audiences and a 
tolerable reduction in key frames that are sent out for 
manual detection suggest that eye tracking data analysis 

with CrowdEyes can be efficient and scale to a low per 
minute cost, while delivering a level of quality that is 
unparalleled by purely computational approaches. As 
evidenced by our findings, giving workers further 
opportunity to validate and refine their entries yielded better 
levels of performance, higher rates of task completion, 
more compensation awarded to workers and, importantly, 
more workers revisiting the job.  

Whereas the self-reporting gaze recall methods [2,24] 
require no other special hardware than a display screen, 
CrowdEyes requires a head-mounted video-based eye 
tracker. In turn, CrowdEyes expands the Pupil platform, 
adding a human-computation plugin, and using a pocket 
PC, two off-the-shelf webcams and a 3D printed head-
mounted frame—low-cost and hackable. However, unlike 
[24] and [2], which must be performed on screen while 
workers complete number of memory-dependent tasks to 
recall gaze positions, CrowdEyes enables robust as well as 
mobile eye tracking under real-world conditions, with few 
constraints regarding locations, lighting conditions, or 
eyewear. This means that eye tracking can be used, for 
instance, to efficiently evaluate outdoor activities (e.g. 
visual attention for cyclists when cycling on or off road) 
and technologies (e.g. the impact of using mobile phones on 
situational awareness during a walk). Moreover, it can also 
be used as a lifelogging tool that video captures and labels 
the surrounding area as well as the wearer gaze and 
fixations, adding more depth to lifelogging captured data. 
As a result, CrowdEyes could eventually be used to drive 
recommender systems based on what a wearer looked at.  

Limitations and Future Work 
While the evaluations presented here were designed to 
include realistic use cases, the approach does require 
ecological validation, which is especially relevant to 
gauging the value of future applications of the fixation 
labeling process. The durations of the eye tracking 
recordings employed in these studies were substantial, but 
the question of how easily the approach scales to longer 
duration recordings does require further evaluation, as do 
considerations related to potential near real-time analysis 
through further parallelization. Furthermore, the process for 
pupil localizations partially relies on gold-standard data. It 
can be argued that it will likely not be necessary to employ 
novel gold data samples for the analysis of future 
recordings, since existing gold data frames could simply be 
reused. The gold standard data itself, however, also poses a 
limitation on the study. Given that some of Tonsen’s dataset 
was human annotated, there was possibly a bias towards 
human annotation methods. In addition, images within 
Tonsen’s dataset were captured with a 95Hz camera, 
whereas CrowdEyes only employed a 30Hz camera. Since 
the workers’ localization accuracy is independent of camera 
frame rate, unlike the costs, we evaluated the localization 
accuracy and costs of our approach with Tonsen’s dataset 
(95Hz) in Stage 1 compared to costs only in Stage 2 
(30Hz). Consequently, we reported the costs difference in 



running CrowdEyes with 30Hz cameras (~US $85 for 
localizations) compared to 95Hz cameras (~US $280). 
However, to reduce the costs, speed up the process and 
ensure higher labeling agreement, in our future work we 
will look at training crowd workers and create a pool of 
trained workers available on demand. Lastly, the promising 
outlook of improving automated methods through 
crowdsourced high quality results, e.g. by training modern 
deep learning networks, certainly warrants further study. 

CONCLUSION 
In this paper, we have presented the motivation, design and 
evaluation of CrowdEyes, a hybrid eye tracking system that 
employs crowdsourcing for pupil and calibration target 
localizations, combined with automatic data processing 
(e.g. gaze mapping) provided by standard functionalities of 
the Pupil framework. CrowdEyes leverages the crowd to 
provide a robust and reliable mobile eye-tracker that 
functions under real-world conditions, a feat that has so far 
remained elusive. The high accuracy of CrowdEyes in 
localizing pupil center highlights the potential it holds for 
enabling a broad variety of applications beyond those that 
are available when using regular contemporary eye tracking 
only. Moreover, in this paper we have presented a novel 
crowd quality measure, which relies on workers to validate 
and refine their entries. This method yields more accurate 
entries, encourages workers to perform better, and prevents 
honest workers from being rejected or unpaid. The results 
of this work suggest our approach is robust, accurate, and 
cost effective. 
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