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ABSTRACT
Finding and maintaining the right level of challenge with respect to the individual abilities of players
has long been in the focus of game user research (GUR) and game development (GD). The right
difficulty balance is usually considered a prerequisite for motivation and a good player experience.
Dynamic difficulty adjustment (DDA) aims to tailor difficulty balance to individual players, but most
deployments are limited to heuristically adjusting a small number of high-level difficulty parameters
and require manual tuning over iterative development steps. Informing both GUR and GD, we compare
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an approach based on deep player behavior models which are trained automatically to match a given
player and can encode complex behaviors to more traditional strategies for determining non-player
character actions. Our findings indicate that deep learning has great potential in DDA.

Figure 1: Screenshot of Korona:Nemesis.
The player (on the left) utilizes Water to
counter a Fire projectile.

Fire Cancels Restoration
Critically hits Restoration/Steel
Destroys Steel projectiles
Applies burning damage over time

Water Immunity against burning
Critically hits Fire/Steel
Destroys Fire projectiles

Lightning Immunity against suffering
Critically hits Water/Death
Destroys Water projectiles

Restoration Restores 10LP
Converts Water projectiles into 10LP
Immunity against Pain

Steel Reflects Lightning projectiles
Reflects Pain projectiles
Critically hits Lightning/Pain

Death Inverts Restoration
Critically hits Restoration/Pain
Applies suffering damage over time

Pain Self-ignites Fire
Critically hits Fire/Lightning
Applies 0.4 seconds stun

Table 1: Element interactions in the game.

INTRODUCTION
Dynamic difficulty adjustment (DDA) addresses potential mismatch between player proficiency and
level of challenge in video games by balancing game parameters that increase or decrease the latter.
Traditional approaches that manipulate core game variables (such as speed, damage or hit ratio), have
been successfully evaluated and integrated in scientific [3] and industrial (e.g. Resident Evil 4)[1]
usage. For practical reasons, DDA is usually hidden, since it yields incentives to perform badly on
purpose [8]. Current DDA systems are typically limited to a small number of high-level parameters
and require careful tuning of threshold-heuristics [10]. Here, we utilize Deep Player Behavior Models
(DPBM) [6] to introduce a distinct adaptation module that incorporates player proficiency implicitly
instead of explicitly and represents and generates game proficiency on a multi-dimensional level,
allowing for complex emergent dynamics. In order to investigate the player experience with DPBM
for DDA, we designed Korona:Nemesis, a platform fighter focused on prediction, learning and decision
making. In an exploratory study, we compared player experience when playing against opponents with
different decision making strategies including basic heuristics, random actions, near-optimal heuristics,
and DPBM. Based on self-determination theory [7], we hypothesize that opponents deploying DPBM-
guided strategies yield high results in interest-enjoyment, due to displaying convincing, but not rigidly
perfect strategies, while tension-pressure might be increased and perceived-competence might be
decreased when facing near-optimal opponents. Both are expected to lead to higher motivation and
better player experience than traditional, trivial or unadjusted opponents. Our results provide first
evidence that DPBM for generating opponent behavior confirms our hypotheses and offers a valuable
subject to study within the field of DDA. We contribute to game user research in the form of a novel
take on DDA and promote the applicability and value of machine learning techniques in video games.

RELATEDWORK
DDA has developed from flow maximization [3] over multi-player balancing [11] up to a tool for
proficiency estimation [2]. In order to estimate the discrepancy between challenge and skill, various
assessment techniques have been researched, such as success probability estimation [3] or biofeedback
[4]. For the adjustment however, most approaches focus on adjusting game difficulty parameters. In the
meantime, machine learning approaches in video game playing that harness continual improvement
through simulated play [9] have become popular. Bringing these developments together, we assess
the experience of players that provide behavior samples feeding a continuous learning process, facing
opponents driven by DPBM on the same proficiency level.
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GAME DESIGN
In order to construct a setting for studying crucial decision making in real-time, we designed a
fast-paced physic-based platform fighter called Korona:Nemesis that extends the classic rock-paper-
scissors scheme to 7 types of element projectiles (cf. Table 1). In each level, players are placed in a 2D
environment, start with 100 life points (LP) and have the objective to eliminate their opponents LP (last
player standing wins). Players canmove (left or right), jump, attack or switch actions. Switching changes
the current stance to one of the 7 elements. Attack will launch an elemental projectile depending on
the current stance. Getting hit by a hostile projectile deals 10 damage. Since damage is doubled on
a critical hit and projectiles can be destroyed, reflected or influenced by other projectiles (cf. Table
1), players constantly have to be aware of present projectiles, their own and enemies’ stances and
adapt quickly to the situation. As in rock-paper-scissors, predicting the opponent is key to success
and since players adapt and react constantly, there is no single dominant strategy (e.g., cf. Sidebar
1). Players need to learn not only the in-game element-interactions, but also their preferred way to
counter attacks and maximize their chances, depending on the current situation. The presence of
multiple viable choices, preferences and dislikes makes for a fertile ground for player modeling and
decision making studies.

When facing an incoming Fire projectile, there
are multiple viable choices. The player might
react with a Water attack, since Water pro-
jectiles destroy Fire projectiles (cf. Figure 1). A
more offensive choice would be to counter this
attack with a Pain attack, which will not stop
the incoming projectile (and thus cost 10LP),
but critically hit and self-ignite the opponent.
At the same time, the opponent has the op-
portunity to re-counter this counter-attack, de-
pending on making good predictions (e.g. if
(s)he predicts the counter-attack to be aWater
attack and wants to counter it with Lightning,
but in fact it is a Pain attack, it will incur a
critical hit).

Sidebar 1: Decision making example.

variable value

timestamp 12/27/2018 5:16:29
mapID Map_Steel6

playerCurrentEnergy WATER
playerChosenAction ATTACK_WATER
playerHPpercentage 100

playerIsBurning 0
playerIsSuffering 0

targetCurrentEnergy FIRE
targetHPpercentage 100

targetIsBurning 0
targetIsSuffering 0

absoluteXdistance 12.194
absoluteYdistance 0.211

fireProjectileAhead 1
waterProjectileAhead 0

lightningProjectileAhead 0
steelProjectileAhead 0
deathProjectileAhead 0
painProjectileAhead 0

Table 2: Sample playermodel entry for the
situation given in Figure 1.

ENEMY TYPES
To focus on the players’ experience of the opponents’ decision making, enemies differed only in
terms of their action selection behavior (and appearance), so possible action and movement choices,
damage calculation, elemental interactions etc. were equal between all opponent types. The following
categories of opponents were pseudonymized in-game to prevent revealing their strategies.

Basic. The basic opponent choses (and stays with) a single elemental stance per level. It is designed
to be the easiest to counter since all actions are trivially predictable and serves as a baseline.

Random. The most balanced enemy in rock-paper-scissors is a completely random one. We decided
to include this strategy as it is impossible to predict and thus hard to counter, since every action is
independent from the preceding behavior or the current situation. Due to the symmetrical setup of
the game, it will make both advantageous and disadvantageous decisions and should therefore not be
(near-)impossible to beat.

Optimal. In order to provide an upper bound of performance, the optimal opponent reacts to each
player action with one of the optimal counter-attacks and tries to maximize the damage applied to
the player.

Player model. Utilizing every player action (together with game state context) executed in the
preceding levels, the DPBM opponent will learn from the player’s behavior and calculate weights
for each possible action, whenever it chooses an action. Depending on the situation, it will make
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decisions similar to the player from whom the behavior originated. In this novel DDA approach, the
opponent will continually develop while the player learns and advances in proficiency and it will make
similar mistakes to the player. In contrast to traditional approaches, players simultaneously have to
overcome and exploit their own flaws to win, potentially leading to an upward spiral of learning in
both the player and the opponent. The ideal win/lose outcome would be an even split, demonstrating
the closeness to the player’s skill.

Figure 2: Network used for a single player.
Real valued variables are mapped to the
range from 0 to 1, energies and conditions
are binary.

PLAYER MODELING
Based on insights about expressive data and suitable modeling techniques from our earlier work [6],
we recorded all crucial player action decisions (attacking or switching with or to the respective element
and jumping) together with contextual data from the current situation (cf. Table 2). After each level,
this data was fed at run-time into a 24x10x10x9 multilayer perceptron with backpropagation and
a logistic sigmoid activation function (cf. Figure 2). The network was initialized randomly and its
architecture was determined beforehand, selecting for an efficient trade-off between training time (<
1 second on tested machines) and prediction accuracy (70-90% on testing set).

PILOT STUDY
Over the course of 2 weeks, we conducted a within-subjects study online. Subsequently to the tutorial,
the experiment manipulated one independent variable (opponent behavior) with four conditions
in randomized order: basic, random, optimal and player model. Data was gathered through game
protocols and a post-study questionnaire.

Measures. In-game, we logged winning scores of all enemies, all of the players’ actions and the
resulting deep learning accuracies. Through the questionnaire, demographics and experience in video
games were recorded. With respect to each specific enemy type, we asked for subjective assessments
how strong and how balanced the particular opponent appeared, captured the player experience
using the Intrinsic Motivation Inventory [5] (all 7-point Likert scales) and asked players to explain the
opponent behaviors in their own words. Conclusive comments, questions and registering an email
address for further studies were optional.

Procedure. Following informed consent and a quick tutorial that explained the controls and
interactions of the game, participants encountered all four enemy types in permuted order. Each
enemy was faced in the first 10 levels of the game, which were kept simple in order to focus on
the opponent. Pausing the game was possible at all times and happened whenever the enemy type
changed. After facing all of the opponents (inM = 12.5 minutes), the subject was redirected to the
web questionnaire and unlocked the multiplayer mode (not part of the study).
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Participants. (n = 98) participants submitted behavioral data and 16 completed the optional
questionnaire (75% male, 18% female, aged 18-37 (M = 26.6, SD = 4.86)). 75% described themselves as
active, 19% as casual or occasional gamers and 6% said that they do not really play video games.

basic random optimal player
model

Score 4.8 ± 1.9 4.4 ± 2 7.8 ± 1.2 3.3 ± 1.9

strength 3.7 ± 1.9 4.5 ± 1.4 6.1 ± 1.1 4.3 ± 1.7
balance 2.8 ± 1.6 3.5 ± 1.4 3.7 ± 1.8 4.2 ± 1.9

IMI:
INT 3.1 ± 1.6 3.7 ± 1.3 3.5 ± 1.8 5 ± 1.6

COMP 3.9 ± 1.9 3.6 ± 1.2 2.8 ± 1.6 4.9 ± 1.9
EFF 4.6 ± 2.2 5.5 ± 1.3 6.2 ± 1 5.6 ± 1.9
TEN 3.7 ± 2 4.8 ± 1.7 5.8 ± 1.1 4.6 ± 1.9

Table 3: Mean statistics ± standard devi-
ations for the four enemy types. Score
depicts the number of wins of the oppo-
nent. Strength and Balance were subjec-
tively reported. INT: interest-enjoyment,
COM: perceived-competence, EFF: effort-
importance, TEN: tension-pressure of the
IMI.

basic "repetitive"
"some kind of predictable"

random "changing his strategy/weapon very often"
"unpredictable"

optimal "very strong and fast"
"always one upping me"
"i had no chance and i hate him"
"too OP" (overpowered)

player "kinda like the [optimal opponent],
but not as OP"

model "a mixture of the other opponents"
"my favorite so far, he was smart and
fast but not too powerful"

Table 4:Qualitative statements by players
about the different opponents.

RESULTS
Using a one-way RM ANOVA, we found significant effects for the IMI scores interest-enjoyment
(F = 3.88,p < .05), perceived competence (F = 3.74,p < .05), tension-pressure (F = 3.47,p < .05),
as well as perceived strength (F = 5.66,p < .01), between opponents. These outcomes were further
evaluated using two-tailed paired t-tests. Regarding the perceived strength, the optimal opponent
significantly outmatched all other types (p < .01,dbasic = .96;drandom = 0.76;ddpbm = 1.01). In terms
of perceived competence, the player model resulted in higher values than the random (p < .05,d = .72)
or optimal (p < .05,d = .93) opponent. For interest-enjoyment, DPBM significantly outperformed all
of the other approaches (p < .01,d = .75 for basic, p < .05,d = .57 for random and p < .05,d = .54 for
optimal). Means and deviations are depicted in table 3. When asked to explain the enemies’ behavior
in their own words, participant statements reflected these sentiments (cf. Table 4). Split into 80/20
training/test sets individually, neural network accuracy scored 49.1% to 100% (M = 70.3%, SD = 13.5%).

DISCUSSION AND FUTUREWORK
As hypothesized, the mean subjective strength with DPBM lies between basic and random/optimal,
though no significant difference was found. The same holds for the mean subjective balance, exceeding
all other enemy types. It did not lead to significantly increased tension-pressure and effort-importance
compared to the other strategies, which might be due to the already high temporal pressure of the
general gameplay and the short session duration. Nevertheless, the significantly higher score for
interest-enjoyment indicates a distinct advantage of playing against the player model. It also apparently
avoids frustrating players by displaying overly strong (and rigid) behavior, which is reflected in
the significantly decreased perceived competence when facing the near-optimal opponent. These
interpretations are supported by the qualitative statements, in which all positive comments relate to
the DPBM approach and all negative ones to the remaining enemy types. This exploratory study is
limited by a small sample size and the low conversion rate from participants who played the game to
actually submitting the questionnaire. In further ongoing work, we will lay more emphasis on the
questionnaire to consolidate the findings concerning player experience. We are also planning to extend
the insights of this short-term study to a prolonged period of time to evaluate the long-term consistency
of the approach. With this early study, we provided an experimental comparison between DPBM
opponents and heuristic ones, yielding evidence for potential to improve DDA capabilities in general. A
comparison to alternative traditional DDA approaches remains future work. We plan to investigate the
difference in player experience between player modeling and threshold-based parameter adjustments.
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In addition, assuming that every player desires a continually learning opponent is a simplification.
Further studies that differentiate between player types might yield additional insights.

CONCLUSION
We compared the player experience of facing a continually learning enemy based on Deep Player
Behavior Models to three classic heuristic game opponent variants. To provide an adequate study en-
vironment, we designed the platform fighting game Korona:Nemesis. First quantitative and qualitative
results indicate significant improvements in player experience when interacting with the DPBM oppo-
nent. Thus, this approach successfully demonstrates a novel, implicit take on DDA and corroborates
the potential application of DPBM in complex and fast-paced real-time game environments.
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